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REPORT ORGANIZATION

ol

VOYAGER PHASE B FINAL REPORT

The results of the Phase B Voyager Flight Capsule study are organized into

several volumes. These are:

Volume I Summary

Volume II Capsule Bus System
Volume III Surface Laboratory System
Volume IV Entry Science Package
Volume V System Interfaces

Volume VI Implementation

This volume, Volume III, describes the McDonnell Douglas preferred design for
the Surface Laboratory System. It is arranged in 5 parts, A through E, and bound in

8 separate documents, as noted below.

Part A Preferred Design Concept 1 document

Part B Alternatives, Analyses, Selection 3 documents, Parts Bl’
B2 and B3

Part C Subsystem Functional Descriptions 2 documents, Parts C1
and 02

Part D Operational Support Equipment 1 document

Part E - Reliability 1 document

In order to assist the reader in finding specific material relating to the
Surface Laboratory System, Figure 1 cross indexes broadly selected subject matter,

| at the system and subsystem level, through all volumes.
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SECTION 11

PYROTECHNIC SUBSYSTEM

11.1 EQUIPMENT IDENTIFICATION AND USAGE - The Pyrotechnic Subsystem contains (a)
pin pullers which unlock the Surface Laboratory (SL) High Gain S-Band Antenna, Mars
atmospheric sensors, subsystem probe, and surface sampler, (b) thrusters which
deploy the four microorganism metabolism detectors, and (c¢) an actuator to deploy
the subsurface probe. Electro-explosive device (EED) control modules, activated by
the SL Sequencer & Timer (S&T) direct electrical power to redundant EED's which
initiate the pyrotechnic energy release required to function the pin pullers, actu-
ators and thrusters. A functional schematic diagram is shown in Figure 11-1.

11.1.1 EED Control Module - The EED control module contains the firing relays arm-

ing relays, firing capacitors and the safe/arm relays required to initiate the pyro-
technic functions as shown in Figure 11-2, A SL pyrotechnic firing circuit (#1),
capable of initiating three EED's is shown in Figure 11-3. A completely redundant
firing circuit (#2) is used to initiate the second EED installed in each pyrotechnic
device. The OSE test connections that provide individual remote checkout of the
safe/arm relay, arming relay, firing relay and EED are also shown.

After the firing circuitry has been checked-out the test connector is replaced
with a shorting plug to maintain the circuit in a shorted condition in the event the
arm relay is inadvertently actuated due to ground handling or other system testing.
The shorting plug is replaced with a flight plug just prior to launch to guarantee
separation of the contacts from the connector case and one another, and provide
environmental protection during launch and transit to Mars.

11.1.2 Electro-Explosive Devices (EED's) - The EED's are hermetically sealed units

threaded at one end to mate with a pyrotechnic device and terminated on the other
end in an integral bayonet lock electrical connector shell surrounding two male pins.
Each EED contains a single standardized bridgewire, an amount of ignition material
and the varied output charge necessary to individually perform the functions shown
in Figure 11-4, A minimum of two single bridgewire circuit EED's will be incorpor-
ated in each pyrotechnic device.

11.1.3 Pyrotechnic Devices - The pyrotechnic devices providing integrated support

of SLS functions identified in Figure 11-4 are described below:

a.Pin Puller - The pin puller is a non-venting pyrotechnic gas operated device
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FUNCTIONAL INTERRELATIONSHIP OF PYROTECHNIC SUBSYSTEM ELEMENTS
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SLS INSTRUMENTS SUPPORTED BY PYROTECHNIC DEVICES

SLS FUNCTION lPYROTECHNlC DEVICEl PYROTECHNIC } NUMBER OF | TIME OF DE-
INSTRUMENT SELECTED FUNCTION |EED'S/DEVICE{VICE FUNCTION
Antenna Release High Gain Contained Pin Unlock Antenna 2 To27*

Pedestal S-Band Antenna Puller Pedestal
Atmospheric |Release Mars Contained Pin Unlock Probe 2 T27 16min
Probe Atmospheric Probe Puller Arm
Surface Release Contained Pin Unlock 2 T27+ 16min
Probe Surface Sampler Puller Sampler Arm
Sub Surface |Release Sub Contained Pin Unlock Probe 2 T27+16min
Probe Surface Probe Puller Arm
Deploy Sub Contained Rotate Probe 2 7274 Y7 min
Surface Probe Actuator Arm to Surface
Microrganism | Deploy 4 In Situ 4 Contained Eject Modules 2 T27  V7min(2)
Metabolism Modules Thrusters T27 18min )
*To7 — Time of Mars Landing
Figure 11-4
11-4

REPORT F694 ¢ VOLUME I11

e PART €

e 31 AUGUST 1967

MCDONNELL ASTRONAUTICS



that contains a piston which protrudes through the pin puller housing and is held

in place with a shear pin. Upon initiation of either or both of the installed EED's
the generated gases will be directed to the piston creating a force which breaks

the shear pin and retracts the piston to a predetermined position.

b. Thruster - The thruster is a non-venting pyrotechnic gas oﬁerated device that
contains a piston, generally retained at the bottom of tube, on top of which modules
of equipment can be placed. Upon initiation of either or both of the installed
EED's, the generated gases will be directed to the piston creating a force to un-
lock the piston retention mechanism and rapidly propel the piston outward to a seal-
ed stop. At this point the equipment module separates from the top of the piston,
due to its kinetic energy and continues on a ballistic trajectory.

c. Actuator - The actuator is a non-venting pyrotechnic gas operated device that
contains a retained telescoping piston to which equipment can be attached. Upon
initiation of either or both of the installed EED's, the generated gases will be
directed to the piston creating a force which unlocks the piston retention mechan-
ism and forces the piston outward to a predetermined length.

11.2 DESIGN REQUIREMENTS AND CONSTRAINTS
11.2.1 Pyrotechnic Device - All pyrotechnic devices identified in Figure 11-4 will

completely contain all the primary products of combustion and those secondary pro-
ducts, such as separation debris, during and subsequent to their function. Contain-
ment of these gases and debris further guarantees interference free operation of

the Surface Laboratory science sensors. Careful material selection will be made to
insure compatibility with the decontamination and dry heat sterilization cycles.

11.2.2 Electro-Explosive Devices (EED) - The standardized EED, used in all SL pyro-

technic subsystem functions, conforms to the requirements and satisfies the con-
straints stated in Section 4.2.12 of JPL Document No. PD-606-4, dated 12 June 1967.
The pyrotechnic composition used in the EED's will be carefully selected for their
ability to survive dry heat sterilization without detrimental degradation.

11.2.3 EED Control Module - The EED's will be shorted and grounded after install-

ation until time for firing. No single failure or procedural error will cause the
control module to inadvertently fire any EED's. The EED energy source will be
isolated from other subsystem uses. A safe/arm device will remove power from the
EED control module. All components in the control module will be compatible with
ETO decontamination and will withstand the dry heat sterilization cycles. The con-

trol module must contain the necessary provisions to telemeter the actuation of the
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arm and fire relays for each pyrotechnic function and the firing of each EED. The
control module must also contain the necessary provisions for remote checkout of
the complete firing circuitry and EED bridgewire continuity after installation of
the EED's.

11.3 PHYSICAL CHARACTERISTICS - Each EED control module is housed in a case
measuring five inches wide by ten inches long by three inches high and will con-
tain the components listed in Figure 11-5. Each EED control module will weigh
approximately 4 pounds.

11.4 OPERATIONAL DESCRIPTION - Figure 11-2 is a functional schematic of the EED
firing circuitry. Prior to landing the SL on the surface of Mars, the safe/arm
relay prevents the EED firing capacitors from being charged. Immediately after
1énding the SL S&T provides a signal which actuates the safe/arm relay in each EED
control module allowing these capacitors to charge within 30 seconds from the SL
main bus. Upon receipt of separate arm and fire pulse from the SL S&T,the arm and
fire relays will energize, discharging the capacitors through the selected EED's.

A minimum of 30 seconds is required between pyrotechnic sequences to permit re-
charging of the firing capacitors.

11.5 PERFORMANCE OBJECTIVES - The standardized EED's used in the SLS Pyrotechnic
Subsystem will provide the performance characteristics listed in Figure 11-6.

11.6 INTERFACE DEFINITION - The EED control module interface with the SL main
power bus through electrical wire bundles to charge the EED firing capacitors; and
with the SL S&T, through electrical wire bundles, which provides a preprogrammed
command signal to initiate charging of the firing capacitors, latch the arm relays
and activate the fire relays for all pyrotechnic sequences. The EED control modules
interface with all the EED's installed in the pyrotechnic devices through wire
bundles to provide the electrical power to sequentially initiate the EED's and sub-
sequently function the pyrotechnic devices. Figure 11-4 shows the functions per-
formed by the selected pyrotechnic devices. Pin puller pistons are inserted in the
equipment to provide a positive interference lock before activation. Deployable
equipment is attached to the thruster pistons which provide ballistic capabilities
to the equipment. The actuator provides linear velocity to permanently attached
components.

11.7 RELIABILITY AND SAFETY CONSIDERATIONS

11.7.1 Reliability Considerations - Each pyrotechnic function in the Surface Lab-

oratory has been made highly reliable by the incorporation of redundant EED's

11-6
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COMPONENTS CONTAINED IN EACH EED CONTROL MODULE

QUANTITY COMPONENTS
2 5 amp - 6 Pole Latch Relay
2 S amp - 4 Pole Latch Relay
3 5 amp - 4 Pole Nonlatch Relay
1 5 amp - 2 Pole Latch Relay
1 2 amp - 2 Pole Nonlatch Relay
3 Capacitor
9 Current Sensors

Figure 11-5

EED PERFORMANCE CHARACTERISTICS
® Pressure Seal Good to 20,000 psi After Firing

® Hermetic End Seal — Leakage Rate Not to Exceed 1076 cc/sec (Helium) at One Atmosphere
Differential Pressure

® Recommended Firing Current: 5 amps Over a Temperature Range of -20°F to +130°F

® Minimum All-Fire Current as Determined by Bruceton Test to be not Less Than 3.0 amps
. or .05 Joules

® Insulation Resistance Greater than 20 Megohms When 500 VDC is Applied Between
Shorted Pins and Case

® Withstand Electrostatic Discharge of 25,000 volts Discharged Directly From 500 Picofarad
Capacitor Between Pins and Case

® EED Body Material Essentially Nonmagnetic

Figure 11-6
11-7
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in each device. Each of the two EED's is initiated by a completely independent
firing circuit. 1Individual EED reliability is estimated to be no less than .9998 or
less than one failure per five thousand firings. With redundant EED's device re-
liability is limited by the complexity of the function to be accomplished rather
than EED reliability.

The functions to be performed in the Surface Laboratory are relatively simple.
With redundant EED's, the reliability of each device is estimated to be no less than
.99995, or one failure per 20,000 actuations. Since there are nine functions to
be performed by the Surface Laboratory pyrotechnic subsystem, the subsystem relia-
bility is estimated to be:

PS (probability of mission success) = .99955

Completely redundant electrical firing circuitry virtually eliminates the
probability of failure due to absence of the proper electrical impulse, if suffi-
cient electrical power is available at the source. For this reason, firing circuit
effect on device reliability is considered negligible.

11.7.2 Safety Considerations -~ All EED's are considered Category A items as defined

by AFETRM 127-1, dated 1 November 1966, due to the inaccessibility of the EED con-

trol modules and EED's after installation of the sterilization canister. The EED's
are installed as separate items independent of their respective pyrotechnic device
interface with other subsystems. The EED's are installed and mated with their
firing circuit connectors, which are shorted by the arm relay, immediately before
attaching the sterilization canister to minimize hazards to personnel during Capsule
Bus final assembly.

11.8 TEST REQUIREMENTS - Development test, qualification tests, X-ray and neutron
radiographic inspection previously performed on the assemblies, subassemblies and
firing circuitry increase confidence of the subsystem preparedness for flight,
Firing circuitry design permits pre-flight monitoring of the circuit components
while maintaining the EED's in a shorted condition. The EED's can also be indivi-
dually checked out after installation of the sterilization canister through the OSE
provisions of the firing circuit while holding the remainder of the circuit in a
safe condition.

11.9 DEVELOPMENT REQUIREMENTS - The selected Pyrotechnic Subsystem devices are
either specifically designed to perform the intended functions, or existing hard-
ware is modified to provide the desired functions. This design approach provides

optimum mating subsystem performance rather than compromise this performance to
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accommodate an existing "off the shelf" pyrotechnic device without modification.

The use of high temperature resistant propellants requires Phase C development
testing to determine the quantitative output energy as it applies to Surface Lab-
oratory Pyrotechnic Subsystem use.

McDonnell has determined by test that the Apollo Standard Initiator (ASI) will
survive the immediate effects of dry heat sterilization. A test is presently in
progress on the ASI to determine the effects of long term storage after dry heat
sterilization.

Extensive design analysis and development testing must be initiated during
Phase C if the use of dual bridgewire EED's capable of withstanding the 25,000 volt
electro-static discharge between the bridgewire is imposed as a requirement on the

SL Pyrotechnic Subsystem.

11-9
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SECTION 12
PACKAGING AND CABLING

12,1 EQUIPMENT IDENTIFICATION - Packaging and cabling are the techniques of
assembling components and subassemblies into assemblies to meet functional re-
requirements, and interconnecting the assemblies to provide subsystem functions,
Packaging covers the layout of internal component parts and their assembly, inter-
connection, and installation within an enclosure and the establishing of equipment
geometry to meet both internal parts and exterior assembly mounting and intercon-
nection requirements. Cabling covers the electrical interconnection of these
assemblies within the Surface Laboratory and the provision of interfaces to OSE
and the Capsule Bus.

12.2 DESIGN REQUIREMENTS AND CONSTRAINTS - Packaging and cabling design require-
ments and constraints have been established for the design of the subsystems
equipment and interconnections within the Surface Laboratory. These include use
of circular connectors only for harness connections and establishment of a minimum
wire gage as 24 AWG.

Proven fabrication processes for wire bundle fabrication assure assembly
uniformity and provide inspection criteria. The processes selected for use on
VOYAGER are listed in Figure 12-1,

12.3 PHYSICAL CHARACTERISTICS - The essential physical characteristics of the
electronic equipment Packaging and Cabling Subsystem are indicated in Figure 12-2,

The standardized electronic subassemblies are installed in four racks, two
on each side of the batteries. This arrangement permits flexibility of equipment
location for mass and thermal balancing. The science equipment is positioned in
the corners of the Surface Laboratory in proximity with their associated booms.

The cabling harness is attached to support panels and routed through the
areas between the batteries and the equipment racks with crossovers between the
batteries and the central decelerator enclosure. The main elements of the inter-
connecting cabling are MIL-C-38999 connectors and MIL-W-81381/1 wire. The
connectors are potted to provide envirommental protection and additional wire
support at the connector wire/contact transition. The individual wires are
bundled into harnesses by the use of lacing tape. Wire bundle harnesses are
established on the basis of signal class, physical routing and location of the
harness installation within the vehicle. When a number of wires are routed

together of the same classification (i.e., signals that will not cause interference

12-1

REPORT F694 ¢« VOLUME III o« PART C e 31 AUGUST 1967
MCDONNELL ASTRONAUTICS




WIRE BUNDLE PROCESS SPECIFICATIONS

SPECIFICATION NO.

TITLE - DESCRIPTION

GENERAL WIRE BUNDLE PROCESSES

PS 17400 Wiring, Electrical; Installation of
PS 17410 Wiring, Electrical, Spacecraft and Missile; Fabrication of
PS 17110 Wiring, Electrical; Identification of
PS 17111 Stripping of Electrical Wires
PS 17113 Lacing and Tying of Wiring
PS 17120 Bonding and Grounding; Electrical
PS 17153 Termination and Grounding of Shielding on Wire and Cable
PS 17172 Waterproofing of Electrical Connectors for Continuous Operation Temperatures
up to 500°F
PS 17410.1 Assembly of Electrical Cable Terminals and Splices
PS 17410.2 Connectors, Electrical, Assembly of
. PS17410.3 Assembly of Radio Frequency Cable Assemblies
PS 17410.4 Connectors, Electrical, Crimp Type; Assembly of
PS 17420 Wiring, Electrical; Shielding of
PS 14070 Storage, Size Selection and Application of Heat Shrinkage Material
PS 20003 Inspection, Storage and ldentification of Rubber Based Adhesives, Potting, and
Sealing Materials
PS 22800 Soft Soldering of Electrical and Electronic Connectors
COMPACT WIRE BUNDLE PROCESSES
PS 17115 Wiring, Electrical, Compact; Fabrication of
PS 17115.1 Wiring, Electrical, Compact; Twisting of Wires for
PS 17115.2 Application of Protective Jacket to Compact Electrical Wire Bundles
PS 17115.3 Wiring, Electrical, Compact; Application of Impregnating Cempound
PS 17116.1 Coating of High Temperature Compact Electrical Wire Bundles
PS 17118 Wiring, Electrical, Shielded Compact; Fabrication of
PS 17118.1 Wiring, Electrical, Shielded Compact; Braiding of Shielding

Figure 12-1
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to each other but may cause electromagnetic interference to or be susceptible
to other classes of signals), they are bundled together and covered with a
common shield jacket. These cables are then routed as a separate cable or
combined with other wires of the same signal class and bunded into a harness.

Sleeving is applied to the harnesses at local areas of possible abrasion or
handling damage. Where wiring is routed through structure or support panels,
grommeted holes are provided. The support panels provide support area sufficient
to allow separation of wire bundles according to signal type and permit routing
of a trunk harness for interconnection of equipment, OSE, and the interface to
the Capsule Bus. The trunk wiring contains direct interfacing connectors
to equipment, except in cases where multiple interconnections between
specific equipments warrant the addition of an intermediate disconnect between
the trunk wire bundle and these equipments. The use of direct connections from
the trunk reduces the interconnecting cabling weight, volume and interfaces; there-
fore increasing the reliability.

12.4 OPERATION DESCRIPTION - All equipment interconnects within the

Surface Laboratory are made using MIL-C-38999 connectors. Manually matea
miniature circular plugs are easily aligned and allow visual inspection of
positive locking. During fabrication of interconnecting cables, all plugs are
aligned and keyed on three-dimensional wire harness boards so that coupling to
the mating equipment in the Surface Laboratory will require minimum rotation
of the plug, prior to mating. Final coupling and locking is completed by one
quarter turn of the plug coupling ring.

12.5 RELIABILITY AND SAFETY CONSIDERATIONS - Reliability of the Surface
Laboratory interconnecting cabling is assured by study of the requirements and
constraints of each wire, connector and contact of each subsystem. Each step
in the design of interconnecting circuits considers peak signal level voltage
and current requirements, electromagnetic interference, mechanical strength,
fabrication techniques, and routing and installation within the Surface
Laboratory.

Pyrotechnic initiator firing circuits are designed to provide complete check-
out and safety of pyrotechnic devices after installation into the sterilization
canister. All initiation devices and circuits are considered Category A devices
as defined by Air Force Eastern Test Range Manual AFETRM-127-1, dated 1 November
1966. Potential safety hazards due to high voltages associated with the
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radio frequency equipment are minimized by standard RF handling precautions.

12.6 TEST REQUIREMENTS - Tests specifically conducted on wiring and packaging are
not required during flight. Subsystem tests with signal and power transfer will
indirectly test the cabling.

12.7 DEVELOPMENT REQUIREMENTS - Components and materials required to implement
high reliability equipment packaging and cabling systems have been selected from
MAC Report E936 "VOYAGER Candidate Materials.'" These components and/or materials
are developed into subassemblies and assemblies by progressive testing at each
assembly level. Where components and materials not listed in the report are
required, special testing will be established to determine their compatibility
with ethylene oxide (ETO) and heat sterilization.

Testing of a connector type, wire types and potting compounds has been
initiated to determine the effect of ETO and heat sterilization and 200 days
vacuum storage. Two identical assemblies have been fabricated, one to be
subjected to the test environments and one for control. The latter will be stored
at room temperature. In addition to the potting compatibility test results to
be derived from the connector assembly testing, a potting slug containing only wires
is also being tested to evaluate a third compound. The test articles are
configured as shown in Figure 12-3,

One particular aspect of electronic packaging is expected to warrant consi-
derable development effort with both basic materials and equipment design. This
is the voltage breakdown problem. ‘

Since the Mars atmosphere is predicted to fall within the critical breakdown
region and the VOYAGER equipment must undergo long term space vacuum exposure, the
problem will be given particular attention. There appears little chance to use
previous expedients such as the hard vacuum of space or fluid (liquid and gas)
filled devices to circumvent the proplem. It is concluded that the best approach
is to attack the problem using insulating, encapsulating and embedding materials
which have been thoroughly cured and outgassed. Good adhesion is also a prime
requisite. Studies to date show that the standard urethane foams are not satis-
factory, although newer products (over conformally coated materials) may have
potential., It now appears that the epoxy or silicone materials, in both the
unfilled and syntactic forms, offer the most promise.

The Surface Laboratory subsystems will be expected to perform for a long
period of time in the critical pressure breakdown regime. The design details

noted as warranting special attention for Capsule Bus equipment require additional

12-5

REPORT F694 ¢« VOLUME 111 e PART ¢ o 31 AUGUST 1967
MCDONNELL ASTRONAUTICS




WIRE ASSEMBLY TEST CONFIGURATION —
ETO, HEAT STERILIZATION AND VACUUM STORAGE

12 in.—4=—12 in.

-

\ X"IT @ MmO 0O wP»)

22 GA Wire Per
MIL-W-16878 Type E

22 GA Wire Per
MIL-W-81381/1

T

i

N— Bendix JTO6RP-12-985(011) Plug
Potting — 3M Company EC 1663
Sealing Compound and EC 1694

Primer Potting Slug
Bendix JTOORP-12-98P(011) Recpt 3M Company EC 1663
Potting — MIL-S-23586, Type I, Sealing Compound
Class 1i and EC 1906 Primer

— 1L

Individual Connector Contacts on Each
Wire Covered With Shrink Tubing
Figure 12-3
emphasis for the Surface Laboratory. Whereas the goal of suppressing corona
to a non-arcing level so as not to interfere with other equipment is sufficient
for some designs, it is inadequate for the Surface Laboratory equipment. Not
only will this equipment be required to preclude the omission of breakdown induced
electromagnetic noise, but it will also be necessary to assure that long term

corona does not progressively degrade dielectrics.

12-6

REPORT F694 « VOLUME III oPART € o431 AUGUST 1967
MCDONNELL ASTRONAUTICS




SECTION 13

THERMAL CONTROL SUBSYSTEM

The Thermal Control Subsystem maintains Surface Laboratory (SL) temperatures
within their allowable ranges throughout all mission phases. Temperature control
is provided to temperature sensitive science instruments and batteries in the
Electrical Power Subsystem. Prior to landing, the subsystem operates within the
overall temperature environment provided by the Capsule Bus Thermal Control Sub-
system. After landing it operates independently, within the Mars surface environ-
ment.

13.1 EQUIPMENT IDENTIFICATION AND USAGE - The preferred SL Thermal Control Sub-
system consists of heat pipes, electrical heaters with thermostats, insulation,
thermoelectric devices, phase change materials, and surface coatings. The heat
pipe components include an internal heat distribution plate, external radiators,
and interconnecting plumbing. A temperature actuated valve, which serves as a
control device, is installed between the radiator and the heat distribution plate.
The internal equipment is mounted on the heat distribution plate. The excessive
heat generated by the equipment during the daytime operation is absorbed by this
plate which then transfers the heat via the heat pipes to the externally mounted
radiators where the heat is transferred to the environment. The function of the
insulation is to minimize the heater power required for thermal control during the
continuous cold condition with Mars cloud cover.

Certain individual equipment and experiments located both internal and ex-
ternal to the primary equipment package are provided with thermoelectric devices
and/or phase change materials and insulation to provide for mainténance of small
temperature tolerances. The thermoelectric devices either absorb or generate heat
as required. The phase change materials function as heat sinks to absorb excess
heat.

13.2 DESIGN REQUIREMENTS AND CONSTRAINTS - The major requirement is to design a
SL Thermal Control Subsystem with the dual capability of heat dissipation and re-
tention to accommodate the extremes of the Mars environment and equipment power.

13.2.1 Equipment Temperatures - The temperature requirements of all subsystems

and most of the experiments are within the selected SL operating temperature range
of 50°F to 125°F. This range is applicable to equipment inside the SL. It

corresponds to that allowable for the batteries, which contribute most of the
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internal SL weight. Other equipment located both inside and outside the SL have
temperature requirements which are not within this range. These items are indivi-
dually temperature controlled using appropriate combinations of insulation, heaters,
thermoelectric devices and/or phase change materials.

13.2.2 Equipment Power Levels - Thermal energy from equipment operation must be.

accommodated throughout the mission. The design conditions for thermal control
occur after landing. These are: peak load during daytime transmission periods,
312 watts; and minimum load during night operations, 100 watts.
13.2.3 Environment - The post landing environmental conditions are most critical
for SL thermal control design. These are:

a. Continuous cold environment with a -190°F ambient temperature.

b. Cyclic environment with day and night ambient temperature extremes of

120°F and -80°F respectively.

c. Terrain slopes of + 34°.

d. Sand énd dust environment which can degrade thermal control coatings.

e. Winds which affect SL heating or cooling.
Additional details on the Mars surface environment plus those of the flight phases
are presented in Part B, Section 5.8.
13.3 PHYSICAL CHARACTERISTICS - The selected SL Thermal Control Subsystem is shown
schematically in Figure 13-1. Basic physical characteristics of the subsystem are

listed below.

Exterior Surface Coatings: Flame sprayed aluminum oxide -- preliminary choice
Size: Two opposed vertical radiators, each 7.75 ft2 area, total 15.5 ft2
4.0 inch thick insulation, glass fiber with silicone binder -- prelim-

inary choice.
Weight: 3.0 1b Electrical heaters and thermostats
2.0 1b Thermal control coating
31.0 1b Heat pipe assemblies
_95.0 1b Insulation
131.0 1b Total (This does not include 97 1lbs of batteries required to
supply heater power).
13.4 OPERATION DESCRIPTION - A schematic depicting the operation of the SL primary
equipment package Thermal Control Subsystem is shown in Figure 13-1. The SL Thermal
Control Subsystem attenuates the effects of external environment fluctuations to
avoid either overheating or cooling of the equipment. After the initial launch

transient, the Capsule Bus temperatures stabilize during interplanetary cruise to a
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low value (near -140°F) except in other thermally controlled areas. The SL tem-
peratures, without thermal control, would reach this same minimum value. The com-
bination of electrical heaters and insulation prevents this cooldown in the SL, and
maintains equipment temperatures within their survival ranges.

During periods when Spacecraft power is interrupted, e.g., trajectory
corrections, the insulation also serves to reduce the cooldown rate. This rate,
less than 2°F/hour in the preferred design will avoid obtaining excessively low
equipment temperatures before the power supply is restored (1.5 to 3 hours without
power is possible). During Mars atmospheric entry the insulation and coatings again
serve to attenuate heat input from the interior of the Aeroshell.

After landing the same thermal centrol equipment continues to function. In
addition, the heat pipes serve to reject equipment generated heat in the following
manner. During daytime operations the equipment generated heat warms the SL until a
temperature of 60°F is attained. At this temperature the heat pipe control valve
opens, the heat pipe fluid vaporizes in the equipment heat distribution plate and is
allowed to move to the radiators. The fluid condenses in the radiators, releasing
the equipment heat which is absorbed, then returns to the heat distribution plate to
repeat the cycle. The heat pipe operation is continuous until the equipment temper-
ature falls below 60°F, which will cause the control valve to close. The two
opposed radiators operate independently of each other with separate control valves.
The radiators are designed such that one radiator alone can dissipate the equipment
heat load when the other is in direct sunlight. At night when the equipment tem-
perature decreases to 50°F, the heater thermostat turns on the electrical heaters
and maintains the equipment at 50°F.

13.5 PERFORMANCE CHARACTERISTICS - Figure 13-2 lists the principal performance>
characteristics of the SL Thermal Control Subsystem. The characteristics of equip-
ment temperature and heater power requirements are shown for the nominal 27 hour
morning terminator landing mission, a diurnal cycle nominal mission extension, and
an evening terminator landing mission.

13.6 INTERFACE DEFINITION - The following list defines the interfaces that exist
between the SL and the CB.

a. Minimization of heat transfer paths across field joints.

b. The view to space of the SL radiators must not be obstructed.

c. Electrical power required for the SL heaters.

d. Heating from rocket motors on SL base region during entry.

e. Temperature monitoring throughout mission.
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SL THERMAL CONTROL SUBSYSTEM
PERFORMANCE CHARACTERISTICS

CHARACTERISTICS

MISSION

NOMINAL - 27 HR
MORNING LANDING

EXTENDED NOMINAL
MISSION - 1ST DAY &

NIGHT

EVENING TERMINATOR

LANDING

Equipment Temperature — °F
® Maximum — Day

& Minimum — Night

/0000000000000

)

*Nightime Peak Heater Power—Watts
® Cyclic Environment

® Cloudy Environment

77 7 T

*Nighttime Integrated Heater Power —
Watt-hrs.

e Cyclic Environment

e Cloudy Environment

7707727227

77

740

1000

=740

4000 (19 hrs)

6300 (30 hrs)

* — 116 Watts of Equipment
Dissipated Heat Not
Included.

* — Mission extension applicable only to cyclic nominal mission.
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f. Capsule Bus thermal control provides SL environment prior to landing.

Interfaces of the SL Thermal Control Subsystem to other SL subsystems are as
follows:

a. Electrical supply for heaters after landing.

b. Experiment temperature requirements.

c. Telecommunication for temperature monitoring.

d. Experiment and equipment mountings must have good heat transfer

characteristics.

13.7 RELIABILITY CONSIDERATIONS - The reliability considerations concerning the
Thermal Control Subsystem were simplified by the passive nature of the subsystem;
i.e., resistance heaters, thermostats, thermoelectrics, heat pipes and insulation.
No dynamic components are involved. All elements of the subsystem involve present
day hardware and techniques.

13.7.1 Operational Reliability - The subsystem is configured simply, however, con-

siderable attention has been directed to operational reliability provisions as
follows:

a. The resistance heaters and associated control thermostats are considered
as being non-essential during the cruise phase. This is due to the fact
that battery charging will generate sufficient heat to satisfy the cruise
phase requirements.

b. Spacecraft command capability exists as to availability of heater bus
power. This is in addition to thermostat control.

c. Heat pipes have demonstrated, under limited McDonnell testing, capability
to handle loads far beyond rated capacity. This capability provides for
mission success should some loss of heat pipe efficiency occur. Thus,
thermal control probability is enhanced over the complementary mean noted.

13.7.2 Failure Mode, Effect and Criticality Analysis (FMECA) - A failure mode,

effect and criticality analysis was conducted for the Thermal Control Subsystem and
the results are presented in Figure 13-3. Each failure mode is categorized accord-
ing to the effect on the following mission objectives:

a. Achievement of Flight Capsule landing.

b. Performance of Entry Science experiments.

c. Performance of Landed Science experiments.

d. Retrieval of engineering data.

The failure categories are defined as follows:
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Category Effect

1 no effect on mission objectives

2 degrading effect on mission objectives

3 possible catastrophic effect on mission
objectives

In keeping with the statements made above as to enhancement of mission success
gapability,the Thermal Control Subsystem FMECA analysis evidences no category
three failures and only possible category two failures. There are three potential
heat pipe failure modes:

l. TLoss of working fluid, either from a slow leak or structural failure.

2. Failure of the control valve in the closed position.

3. Failure of the control valve in the open position.
The result of the first two failure modes is the same, a reduction in the daytime
heat rejection capabilities. (The vapor chambers for each of the four heat pipes
in the system are not interconnected. Thus, a leak in a single vapor chamber will
fail only one heat pipe). Loss of a single heat pipe would be of little conse-
quence. The peak daytime temperature would increase only 5°F, from 100°F to 105°F.
Even the loss of all four heat pipes would not completely compromise the mission
since the Thermal Control Subsystem would essentially revert to the passive subsystem
described in Section 5.8 of Part B. This subsystem can survive the first communica-
tion period, and overheats only during the second communication period. A much more
severe heat pipe valve failure mode occurs when a valve fails open, where for the
cold environment condition the heat loss through the heat pipe would be sufficient
to drain the SL batteries, due to excessive heater demands. However, even though
this condition is most unlikely to occur, it can be easily remedied by including
one or more pyrotechnic valves which would be fired to vent the heat pipe working
fluid, thus effectively causing the subsystem to revert to the much less severe
closed valve failure mode. Since the probability of heat pipe valve failure is so
remote, pyrotechnic valves are not included in the SL Thermal Control Subsystem. In
any event data will be obtained for one full day-time period for the nominal morning
landing mission.

13.7.3 Reliability Estimate - The functional logic relationship of components in

the Thermal Control Subsystem are depicted in the Reliability Diagram, Figure 13-4.
The Reliability Estimate Summary, Figure 13-5 evidences the Thermal Control Sub-
system calculated reliability of .9939.
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SL THERMAL CONTROL
RELIABILITY DIAGRAM

@——=RESISTANCE HEATERS====eCONTROL THERMOSTATS

THERMOELECTRICS =m0
(14) (14) (4)

|REAT PIPE T T T T 1

| I
O-'I——RADIATORS——HEAT PIPES‘—-CONTROL VALVESJ—.

IL (2) (4) (4) J'

———————————————————— Figure 13-4

SL THERMAL CONTROL
RELIABILITY ESTIMATE SUMMARY -
COMPONENTS tm W] s 2) | -Lnrx10®  (3)
Cruise

Proximity Resistance

Heaters (10) 5549 - = 0
Control Thermostats (10) 5549 - =

Redundant to Battery Heat

Landed

Proximity Resistance Heaters (14) 87 0.10 9
Control Thermostats (14) 87 0.20 17
Thermoelectrics (4) 87 0.12 10
Heat Pipe

Radiators (2) 87 10.00 870

Heat Pipes (4) 87 40.00 3480

Control Valves (4) 87 19.4 1688

6084 4R = .9939]

Notes: (1) tm = modified time factor x time (hours)
(2) 9 = failures per million hours
(3) -LnR x 106 = tmd
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SECTION 14

SCIENCE SUBSYSTEM

The functions of the Science Subsystem which includes the Science Data Subsystem,
the Sample Acquisition and Processing Equipment and the Science Instruments are
summarized in Figure 14-1. Functional descriptions of the equipment required for
carrying out the scientific mission appear in sections 14.1 through 14.3.

SCIENCE SUBSYSTEM FUNCTIONS

EQUIPMENT FUNCTIONS
Science Automatic device to
Subsystem 1. Photograph the area around the Lander
2. Make spectral solar radiation and climatological measurements
3. Collect atmospheric, subsurface gas and soil samples.
4. Make a biological and chemical analysis of the samples
5. Process the data and transfer it to the telemetry subsystem
Science 1. Sequencing and control of the science instruments and the sample
Data acquisition and processing equipment*
Subsystem 2. Calibration, range switching data acquisition, and data storage
Science 1. Collect surface and subsurface atmospheric and soil samples.
Acquisition 2. Make a measurement of the bulk density of the soil sample
and Processing 3. Meter samples according to volume requirements to the instruments
Equipment for analysis
SCIENCE INSTRUMENTS
Camera 1. Photograph in stereo a panoramic view 360° x 90° plus five
24° x 24° frames
Atmospheric Measurements over at least one diurnal cycle of
Measurements 1. Pressure = 1 percent
Package 2. Temperature t | percent
3. Humidity
4. Wind speed accurate to + 5° and direction accurate to within 15°
Spectro- 1. Spectral measurements of the near surface, far surface; sky and sun
Radiometer with 35 wavelength bands between 0.2 and 30 microns with a + 15°
field of view
2. Total solar radiation measurement within a * 60° field of view
Alpha Measurement of the alpha backscatter and proton spectrums resulting
Spectrometer from the bombardment of prepared soil samples by alpha particles from
a radioactive source
Gas Measurement of the chromatograph spectrums using four columns for
Chromatograph atmospheric, subsurface atmospheric and soil volatile samples
including the pyrolysis to produce the soil volatiles
Specific Life Detection of growth, metabolism, and photosynthesis using simple
Detectors cultures and both prepared samples and in situ measurements
Subsurface Measure subsurface temperature using nine temperature sensors on the
Probe Sensors subsurface probe
*Part of the control function by TM subsystem Figure 14-1
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14.1 SCIENCE DATA SUBSYSTEM - The Science Data Subsystem (SDS) in the Surface
Laboratory (SL) has two functions. The first function is to acquire and format

data from the science instruments into a coherent bit stream and transfer this

data to the SL Telemetry (TM) Equipment for subsequent transmission to Earth by

the Radio Subsystem. The second function is, upon receipt of a start signal from
the SL TM, to provide commands necessary to sequence each science instrument through
its experiment program.

14.1.1 Equipment Identification and Usage - The SDS has the following major compo-

nents:

a. Visual Imaging Remote Interface Unit

b. Atmospheric Properties Remote Interface Unit

c. Soil Analysis (Alpha Spectrometer) Remote Interface Unit

d. Gas Analysis (Gas Chromatograph) Remote Interface Unit

e. Life Detection (Metabolism 1 and 2) Remote Interface Unit

f. Life Detection (Growth) Remote Interface Unit

g. Subsurface Probe Remote Interface Unit

h. Spectroradiometer Remote Interface Unit

i. Soil Sampler and Processor Remote Interface Unit

j. DC to DC Converter

Figure 14.1-1 is a functional block diagram of the SL SDS. Figure 14.1-2
illustrates a typical science time line for the 1973 mission.

The data requirements of the SL SDS are defined in Figure 5.4-4 of Part B,
Volume IITI, "The Surface Laboratory Instrumentation List." The equipment works
principally in conjunction with the following:

a. The SL TM which provides on-off and mode selection control for each

Remote Interface Unit (RIT) and temporary storage for science data, and

b. The science instruments.

The SL SDS has a total of 116 data inputs; 41 of which are single ended high
level, 44 are double ended low level, 18 are bilevel and 13 are digital. The SDS
provides a total of 57 sequencing commands to the science instruments and re-
ceives 15 status commands from these instruments. Only those signals which are
active during a given experiment are monitored and transferred to the SL TM for
telemetering.

14.1.2 Design Requirements and Constraints - Aside from the usual VOYAGER require-

ments and constraints of;
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SCIENCE SEQUENCE
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a. Sterilization,

b. 1ow power consumption,

C. Hard vacuum space environment,

d. 1Life,

e. Reliability,

f. Satisfactory operation after a long dormancy,

the SL SDS has data and control oriented requirements and constraints. These are:

a. Reprogrammable experiment sequencing for mission flexibility,

b. Modularized SDS to minimize the impact of experiment redefinition on
designed and/or qualified hardware,

c. DC isolation of all digital interfaces =~ reducing ground loop vehicle
noise,

d. Usage of alternate functional, paths as opposed to block redundancy,

e. Graceful degradation.

14.1.3 Physical Characteristics - The SL SDS occupies 200 cubic inches, weighs

10 pounds, and requires 11.5 watts. Note that the estimated weight is significantly
less than the 20 pounds specified in the JPL Constraints Document , This

is because science instrument on-off and mode selection control as well as temporary
data storage is provided by the reprogrammable core memory of the SL TM programmer..
This approach reduces the weight of the SDS but increases the weight of the SL TM.
The net result, however, is an overall savings in total weight.

14.1.4 Operational Description - The operational description is divided into two

parts. The first describes the modes of operation of the equipment in terms of
the mission phase. The second part describes the functions of the principal com-
ponents.

14.1.4.1 Operational Modes - The SL SDS will experience 4 modes: launch and inter-

planetary cruise, in-flight checkout, deorbit/entry, and landed data acquisition.

0 Launch and Interplanetary Cruise - During this mode science instruments

and the SDS are dormant, thus only a small amount of status information
is required. The status information is monitored by the SL TM cruise
commutator and transferred to the Capsule Bus (CB) for subsequent trans-
mission to Earth by the Flight Spacecraft(FSC).

o In-Flight Checkout Mode - During this mode all of the science instruments

will be tested prior to separation. The SDS has a checkout mode to
support checkout of the instruments. The data acquisition and transfer

rates will be the normal rates but the total amount of data transferred
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will be reduced by only transferring a limited number of data frames. The
data acquisition formats are the same as for the Landed Data Acquisition
Mode and are shown in Figure 14.1-3.

o Deorbit/Entry - As in the launch and cruise mode, the science instruments

as well as the SDS are dormant, thus only status information is required. The
status information is monitored by the SL TM cruise commutator and trans-
ferred to the CB for subsequent transmission to Earth.

o Landed Data Acquisition Mode - In this mode the SDS must initiate science

instrument operation, provide all sequencing commands necessary to perform
each experiment, acquire data from each instrument, and transfer the ac-
quired data to the SL TM.

14.1.4.2 Component Description - The SDS is in reality a group of 9 modules (Remote

Interface Units) assembled as a package and serving as interfacing devices between
the SL TM and the science instruments. Each instrument has a unique RIU designed
to meet its specific operating requirements and presenting a standardized interface
to the SL ™. The actual sequence by which the experiments are run is stored in
the reprogrammable SL TM memory. The TM programmer compares vehicle time with
stored control words and, when comparison is achieved, a signal is addressed to the
appropriate RIU to initiate operation of a specific instrument in a particular mode.
RIU proceeds from that point providing all signals (commands and data interrogations
in proper time phase) necessary to complete that measurement and acquire the data.
The data is transferred to the SL TM for storage either in the TM core memory or,

in the case of imaging data, the DSS tape recorder. Data acquisition formats for
each RIU are shown in Figure 14.1-3. RIU's for each experiment are described below.

o Visual Imaging RIU - A functional block diagram of the Visual Imaging RIU

is presented in Figure 14.1-4. Required experiment commands are indicated
at the left of the diagram. Several status commands which must be trans-
mitted to the RIU, are generated by the imaging system. These include
three short-pulse outputs (mode complete, data ready, and end of line)
which trigger the RIU status flip-flops. Two other status commands (dust
inhibit and light level inhibit) will be continuous-pulse. Science and
engineering data are handled separately in this experiment. Due to the
large quantity of science data, the ten parameters shown in the block

diagram are multiplexed and transferred to the SL TM equipment. The three
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SCIENCE DATA ACQUISITION FORMATS

® Spectroradiometer
Part | {Insolation) — 2 Samples/Second

5.5Seconds —— ]

DnanonanaE

| - Insolation Measurement

* _ Temperature Measurement
8 Bits/Sample

Above frame repeated at 15 minute intervals.

Part 2 (Radiation Intensity) — 1 Samples/Second
73 Seconds !

310 3 Y G A I K LY

|—— 0.5 seconds

V - Viewing Direction
R - Radiation Intensity
* _ Temperature

8 Bits/Sample

Above frame repeated for each of four view directions per experiment.
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Day/Night
V15 1/60 } Samples,

1.D. 1|
1
2
L1 j Read Rate =
T 1 8 Bits/Sa
10

Sunrise/Sunset
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1.D. | 10 | 14 | 1.D. [ 12 [ 4]
1 13

NO |0 N o

»niblwliN

Read Rate = 32 kbps
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Figure 14.1-3
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Minute

3% BPS

nple

Minute

2 kpbs

e

o Life Detection (Metabolism 1 & 2) (Burst Tube)
Prepared Soil Sample
1 1/10 } Sample s/Minute
10.| 3 |
1 Read Rate = 32k bps

11710 } Samples/Minute Channe

1.D. 2 ] Read Rate = 32 kbpS (C::(,nn(
3 anngé

t Tube)

bles/Minute

Rate = 32 k bps
bits/Sample

les/Minute

Rate = 32k bps
s/Sample

e Visual Imaging
Low Resolution Panoramic Stereo

1 Image Line
—_—A
P N\
31 Bit 300 - 6 Bit Data Words
Line Synch

=~ .204 seconds
Read Rate = 9 kbps

Notes: 1. Prior to each camera frame, 8 bits will be inserted to
identify camera number, field stop, Lens 1 & 2position,
cam number, and frame number.

2. 0.125 seconds between lines.
3. Every tenth line, an azimuth measurement
(8 bits) will be inserted.

Medium Resolution

1 Image Line (.2 seconds)

A
/- A

63 bit .
Line Synch 400 — 6 Bit Data Words

R/0 Rate = 12 kbps

Notes: 1. Same as Note 1 above.
2. Nearly 0.0125 seconds between lines.
3. Every 50th line, an 8-bit azimuth measurement will be inserted

Engineering Data

8 Bits 8 Bits 8 Bits 8 Bits

I.D. Motor 1 Temp | Motor 2 Temp | Tube Temp [Re.

~
o1 111
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I'1 ~76 Bits
12 - 55 Bits
13 - 30 Bits
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low-rate, low-volume engineering parameters (temperatures) are sampled,
amplified and encoded in the RIU prior to transfer to the SL TM Equipment.
The data acquisition formats for this experiment are shown in Figure 14.1-3.

Atmospheric Properties RIU - The block diagram for this RIU is shown in

Figure 14.1-5. Commands required by this experiment are indicated in the
bottom left hand corner of the block diagram. On-off commands will be
generated by a flip-flop and the remaining five commands by one-shot multi-
vibrators. No status commands are generated by this experiment. The data
acquisition formats are shown in Figure 14.1-3.

Soil Analysis (Alpha Spectrometer) RIU - Operation of this experiment re-

quires six short-duration, pulse-type commands as shown in the bottom left-
hand corner of Figure 14.1-6. In addition, alpha and proton accumulator
readout requires that each accumulator be addressed directly; thus neces-
sitating a total of 512 9-bit commands which will be transferred in parallel
from the RIU programmer. This programmer is a simple binary counter oper-
ating at 32 kHz. The "start count" command will be initiated by the SL T™™
programmer. The "start count" command will be used to switch the RIU output
data line from the position shown in Figure 14.1-6 to the "data ready"
position.

There are two RIU data acquisition modes, the engineering mode which
is active during an experiment and the spectrum (accumulator) readout mode
following completion of an experiment. Data acquisition formats for this
experiment are shown in Figure 14.1-3.

Gas_Analysis (Gas Chromatograph) RIU - A functional block diagram of this

RIU is shown in Figure 14.1-7. Both power on and power off signals are
pulses that drive a latching relay which controls the power. The mode-
selection signals are three binary-coded lines which select one of five
modes in the chromatograph equipment. A single "analysis complete"
signal is received when the experiment is concluded.

Four experiment parameters and three engineering parameters are low-
level signals and eight experiment parameters are high-level signals. Each
parameter is selected by the RIU sequencing programmer and a convert signal
starts the conversion of each parameter to a digital value. Data acquisition
formats are shown in Figure 14.1-3.

Life Detection (Metabolism 1 and 2) RIU - The functional block diagram is

shown in Figure 14.1-8. Five short, pulse type commands are required by

14.1-8
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ATMOSPHERIC PROPERTIES EXPERIMENT RIU
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GAS ANALYSIS (GAS CHROMATOGRAPH) EXPERIMENT RIU
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Gas Press., Cal. Gas

______ ADC

Data to
=g S| TM Equipment

LL f

SL TM Equipment

<

Clock Generator

SL TM Equipment
L_— Programmer On/Off
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|
I 1
Power On/QOff €= 2/ . Programmer
—— e ST
Mode Select Decoder — Sequencer

{5 Modes)

T ‘Reset

“‘Analysis Complete”’ 1/

““Analysis Complete”’
Flip-Flop

Figure 14.1-7
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this experiment; power on/off, start, read, and recycle. The latter

command is transmitted by the RIU upon receipt of a status command from

the experiment, indicating completion of the preceding cycle. There are

two data lines from the experiment to the RIU. The first, containing .science
data, is sampled once every minute throughout the 12-hour experiment. The
104 data bits are read out at 32,768 bps. The second line, containing en-
gineering data is sampled once every ten minutes. These 55 bits also are
read out at 32,768 bps. The data formats are illustrated in Figure 14.1-3.
Life Detection (Growth) RIU - Figure 14.1-9 is a block diagram for this RIU.

All commands from this RIU are pulses. The "recycle" command duration is
in the millisecond range while the "step commutator" and "switch output
lines" commands are gated clocks. A single response is obtained from the
experiment equipment (cycle complete) indicating the end of a data genera-
tion cycle.

Three lines carry the commutated data to the A-D converter. Only one
line is active at a time and a sequence of five high-level measurements are
received over a 100-second period. Data from the A-D converter is trans-—
ferred serially at 32,768 bps to the SL TM Equipment. No data commutation
capability is required in this RIU. Data acquisition formats are shown in
Figure 14.1-3.

Subsurface Probe RIU - Four decoded commands provide constant-level outputs

(unstow, deploy, zero calibrate, full-scale calibrate). The remainder of
decoded signals are pulses whose duration is selected to match the require-
ments of the equipment operated by the pulse. For example, the temperature
power on/off control will be a latching relay so that no power is consumed
ing the relay on. The pulse width of these signals is about 10 milli-
seconds. The "temperature-data sample" signal is used to step a multiplexer
in the experiment.

Three control responses are received from the experiment equipment
(unstow complete, deploy complete and pump-cycle complete). These signals
are pulses that set flip-flops in the status Command Encoder.

Experiment data is multiplexed by the experiment equipment so that the
ten samples appear sequentially on a single line. This line is connected to
a low-level analog gate and subsequently to an amplifier. An engineering
parameter also is gated into the amplifier. The amplifier output provides

the input to the A-D converter which operates on command from the RIU sequencer
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LIFE DETECTION (GROWTH) EXPERIMENT RIU
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programmer. A functional block diagram is shown in Figure 14.1-10. The
data acquisition formats are shown in Figure 14.1-3.

Spectroradiometer RIU -~ Figure 14.1-11 presents a block diagram of this

RIU. Three short, pulse-type commands are required by this experiment (power
on, power off and sample). The latter command is transmitted by the RIU
Sequencer programmer upon receipt of a status command (pointing complete)
from the experiment. To provide pointing information for the experiment,
an appropriate binary-coded command will be generated in the sequencer pro-
grammer and relayed serially through the RIU Command Store and Decode Unit,
Eight output data lines are provided by the experiment. Four of these
lines are required for the spectrum scanning measurements and will be
sampled sequentially following receipt of the "sample" command. Data on
each line will contain multiplexed samples from forty parameters to an 8-bit
encoding accuracy requirement. A 4-bit tag will be added to each encoded
word at the ADC output. The total insulation output line is sampled at 15-
minute intervals and encoded to 8 bits. Three 8-bit temperature measure-
ments also are required at 15-minute intervals. All data samples will be
transferred from the RIU at 32,768 bps. The data acquisition formats are
illustrated in Figure 14.1-3.
Soil Sampler and Processor RIU - The functional block diagram for this RIU

is shown in Figure 14.1-12. 1In this RIU five command pulses are generated.
Among these five commands is a signal for sample density value readout.
Three additional commands are binary-coded bit streams (sampler azimuth:

7 bits, foot position: 4 bits and sample override: 2 bits). Seven control
responses to the commands are generated as pulses that set flip~-flops in

the Status Command Encoder. Five of the READY signals indicate that samples
are ready for analysis in other experiments (i.e., alpha spectrometer, gas
chromatograph, Wolf trap and two Gulliver experiments).

Two experiment parameters and one engineering parameter produce low-
level analog signals. Five experiment parameters produce high-level analog
signals and the remaining six measurements are bilevel signals. Coordination
of A-D conversion with multiplexing is facilitated by a convert signal
generated concurrently with the sampling signal. The data acquisition

formats are shown in Figure 14.1-3.
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SUBSURFACE PROBE RIU
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SPECTRORADIOMETER RIU
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14.1.5 Performance Characteristics

a. Input Signals

o Single ended high level 0-5V

o Dougle ended low level 0-40 mv maximum of 10V common mode
o Double ended low level 0-120 mv maximum of 10V common mode
o Logic level digital inputs -0 or 5V

o Nonlogic level bilevel O or 28V

b. Conversion Accuracy

o Single ended high level +1 count in 254

0 Double ended low level +2 counts in 254

0 Logic level digital, 1 error in 105

o Non-logic level bilevel, 1 error in 103 with less than 1V or a "space"

and greater than 4V as a mark

c. Output Signals
o All digital, 0 or 5V, 5K ohm

o Straight binary encoded NRZ zero and full scale suppression out of ADC's

d. Programming

o Interlaced or burst tube formatting for all programs

e. General
0 Analog switching action is independent of source impedance

o DC isolation in all digital interfaces

o

Signal, power and chassis isolation

Vehicle time in each frame

—
ol
[

o
-6 Interfaces - The interfaces are given in Figure 14.1-13.

[

4.1.7 Reliability - The SDS Equipment Reliability Model, Fault Tree and Complexity
Estimate are shown in Figures 14.1-14, 14.1-15, and 14.1-16 respectively. The
estimated reliability for the SDS is .987. The SDS design is characterized by multi-
channel cooperative redundancy by decentralization of Remote Interface Functions.
This feature enhances partial data retrieval probability in the event individual
failures occur. Due to the relative independence of the Remote Interface Units from
each other in lieu of one single complex RIU, probability of partial mission success
is improved to .998 for the SDS. No special safety provisions are required because

there are no high voltage applications in the subsystem.
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SURFACE LABORATORY SCIENCE DATA SUBSYSTEM INTERFACE MATRIX
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Visual Imaging RIU X X
Atmospheric Properties RIU X X
Soil Analysis RIU X X
Gas Analysis RIU X X
Life Detection (Metabolism) RIU X X
Life Detection (Growth) RIU X X
Subsurface Probe RIU X X
Spectroradiometer RIU X X
Soil Sampler & Processor RIU X X
DC to DC Converter X
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14.1.8 Test - All of the science instruments are tested through the SDS during the
test build-up from factory tests through lift-off. During the Mars orbit in-flight
checkout mode, all of the science instruments are tested through the SDS. Prior to
any of the using science instrument tests the SDS is tested. The SDS tests are
conducted in a checkout mode. See Figure 14,1-17.

The SDS tests are principally directed toward the major functional blocks
following a specific data "chain". Each "chain" is identified by a block of signal
types, e.g., a low level calibration signal(s) is injected to a low level gate and
the output of the SDS (at the TM input) is monitored. This tests the chain of low
level signals, namely, the gates and gate driver programming, the differential
amplifier, and the digital multiplexer. Note that each individual gate is not
tested (in-flight) but all of the major functional blocks are tested. Factory test-
ing tests each gate, while the individual gates are tested in flight when monitoring
the science instruments.

14.1.19 Development Status - Aside from the normal VOYAGER development requirements,

specifically reliability and sterilization, the SL SDS will not require any state-

of-the-art advances.
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14.2 SAMPLE ACQUISITION AND PROCESSING EQUIPMENT - The sample acquisition and
processing equipment consists of: (1) the surface sample acquisition equipment,

a boom~mounted device capable of collecting solid surface and shallow subsurface
samples using an auger drill, (2) a processing unit which takes the raw material
coming out of the surface sample acqusition device and screens the samples to
obtain 0 to 200/4, 0 to 500/4, and 50 to SOO/Agraded samples for the science
instruments and (3) a subsurface probe mechanism which is the acquisition device
for collecting gases trapped below the surface. The subsurface probe also includes
thermocouple instrumentation for measuring subsurface temperatures. The thermo-
couple instrumentation is discussed separately in Section 14.3.10.

14.2.1 Surface Sample Acquisition Equipment - This equipment consists of a boom-

mounted surface sample acquisition device which collects soil samples at various
locations. These samples are transferred to the mechanical processor within the
surface laboratory for eventual distribution to the science subsystem instruments
for analysis. The functions of the equipment are described in Figure 14.2-1.

14.2.1.1 Equipment Identification and Usage - The surface sample acquisition

equipment is comprised of the following major component assemblies:
a. Sample acquisition head
b. Boom
c. Boom support assembly including elevation and azimuth actuators
d. Material conveyor
e. Logic and control

o Sample Acquisition Head - The sample acquisition head is basically an

auger surrounded by a casing. The auger is capable of retracting at
successive intervals to remove accumulated materials. The sample acqui-
sition head has the following characteristics:

a. Capability for boring an 0.80 inch diameter hole

b. Acquisition capability for hardness of soil structure equivalent to
hardpan as well as loose particle gathering

c. Range of elevation angle travel from 50 degrees downward to 70 degrees
upward from the Surface Laboratory base plane.

o Boom and Boom Support Assembly - The boom provides support for and

positioning of the sample acquisition head. The boom has the following
characteristics:
a. Provides a minimum of 120 degrees of lateral sweep for positioning

b. Effective length adjustable from five to nine feet

14.2-1
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SAMPLE ACQUISITION EQUIPMENT
(FUNCTIONAL BLOCK DIAGRAM)
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o Material Conveyor - The material conveyor tube delivers the acquired

samples to the processing equipment. The head is lifted above the
surface so that the collected sample will slide down the conveyor tube to
the processor.

o Internal Control - The internal control consists of the signal gener-

ation and closed loop control required for changing sites when hard
material is encountered and for stopping the acquisition operation when
a bin full signal is received from the processor.

14.2.1.2 Design Requirements and Constraints - The surface sample acquisition

equipment design requirements and constraints are:

a. Minimum destruction of life forms
. Accomplishing its tasks within view of one of the cameras

c. Acquiring required sample quantities, 380 cm3, at minimum power consump-
tion

d. Sample outputs from the acquisition equipment must be suitable for pro-
cessing. {(The processor must provide a total of $2 cm3 of graded samples
in size ranges of 0 to 500/4, 0 to 200/4, and 50 to 500/4.)

e. Maximum assurance of soil material being acquired

Suitable for use in acquiring materials of different textures, such as

loose materials and conglomerates of 250 psi crushing strength.

14.2.1.3 Physical Characteristics - The configuration of the surface sample

acquisition equipment which has a total weight of 16 pounds is shown in Figure

14.2-2 and 14.2-3.

14.2.1.4 QOperation Description - The surface sample acquisition equipment is

deployed using an electrical impulse from the electro-explosive device (EED)
control module (Section 6.0) to the pyrotechnic release tie-~down clamp. Prepro-
grammed commands drive the azimuth and elevation actuators to position the

sample acquisition head for drilling. After positioning the head, the elevation
actuator applies a downward force to the drill head for drilling. After the

auger penetrates the overlay strata the auger is raised, and the material gathered
is ejected belowthe manifold through a dump valve. Sample acquisition is then
initiated by boring to a depth below the surface level (10 cm max.) and depos-—

iting the material in the sample catch manifold. Upon completion of drilling
to the desired depth the acquisition head is elevated and the sample material is

14.2-3

REPORT F694 ¢ VOLUME 111 ¢ PART C e 31 AUGUST 1967
MCDONNELL ASTRONAUTICS



SOIL AUGER AND BOOM

10§DNPdY Ynunzy

jiodsupij | JomlN

UO1JDNYDY UOIUI Y puUD YO0y

woog jo jusws|] buidodsaja) ||/

1apup] \ \ ; "

=

qe7

14604146

\-.Jossadoid 0}
yiodsupi] |1oG Jo4

uo4pA9| ] woog

14.2-4

o 31 AUGUST 1967

MCDONNELL ASTRONAUTICS

e PART ¢

REPORT F694 ¢ VOLUME TII




SAMPLE ACQUISITION HEAD CONFIGURATION

Support Foot Actuator \

Support Foot Linkage

Sample Catch
Manifold

Overlay Material
Discarded through
Open Valve Here

i4.2-57
REPORT F694 ¢ VOLUME III e PARTC e 31 AUGUST 1967

MCDONNELL ASTRONAUTICS






Valve Actuator
(Sample Requisition
or Overlay Discard)

Support Boom and
Conduit for Sample
Transport. (Elliptical
Tube)

3

.

Auger Drive Transmission rd
Reduction Ratios:

120:1 While Drilling /
24:1 While Retracting Bit
and Discharging /—'\ ;

Sample or Overlay \
Retraction by Motor
Reversal and Clutch
Engagement
Bit Extension Same
as Drilling

Details of
Sleeve Valve

/Auger Casing

(Rotates when Bit is
Down. Stationary

A when Bit is Retracted)

\I Auger Bit '

/ g A
(Retractable) View A

Support Foot
Figure 14.2-3

s . 2-5 -2



transported by gravity to the processing equipment conveyor. Programming then acti-
vates the boom length actuator for a one increment (3 inch) extension and the drill-
ing operation is repeated. Upon maximum extension of the boom, the boom is auto-
matically retracted and the azimuth actuator is activated for an incremental (3
degree) change in azimuth. Drilling and sample gathering continues until a sufficient
material batch is acquired for the processor. A discrete signal from the processor
terminates drilling operations for the experiment period.

Internal control will automatically terminate drilling in any single boring
if impenetratable material is encountered and the operations will proceed to the next
incremental boom position.

Sample acquisition will be accomplished at four intervals during the mission:

a. immediately after landing (lst hour)

b. in the morning (2nd hour)

c. in the evening (10th hour)

d. during the night (18th hour)

The surface sample acquisition equipment has an electrical power allocation
that permits accumulated drilling time of one hour. After acquiring sample material
from the far left and near left sectors of the reachable area 120° azimuth and 5 to 9 foot
reach) for the first two intervals (a and b above), the equipment will be programmed
to the near right sector for the third interval (c) and to the far right sector for the
fourth interval (d). Earth commands to the Sequencer Subsystem (Section 2.0) can
change the preprogrammed sequence described above to enable drilling and sample ac-
quisition from any point within the attainable surface area.

14.2.1.5 Performance Objectives — The performance objectives of the surface sample

acquisition equipment are as follows:
a. Collection of 380 cm3 of sample material within a one hour period from a

minimum of three sites.

b. Rejection of one centimeter or more of surface soil for elimination of
contaminants and for sample acquisition at greater depths.

14.2.1.6 Interface Definition - The interfaces between the surface sample acquisi-

tion equipment and other equipment are shown in Figure 14.2-4 and 14.2-5.

14.2.1.7 Reliability and Safety Considerations - The soil sampler which provides

samples to the alpha spectrometer, the growth detector, the gas chromatograph and
the metabolism detector is not functionally backed up by any other unit. If the
sampler fails, data will not be obtained from the alpha spectrometer and growth de-
tector. The other instruments will, however, make partial measurements. The gas

chromatograph will analyze atmospheric and subsurface gases and the metabolism

14.2-6
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SAMPLE ACQUISITION EQUIPMENT INTERFACE DIAGRAM
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SOIL ACQUISITION EQUIPMENT
ELECTRONIC INTERFACE SUMMARY

1. OPERATING MODES

MODE

MODE CHARACTERISTICS

Soil Sampling

Operations total 2 hours. Operations
intermittent with sample processor.
Operations interleaved.

Total drilling time of one hour.

2. DATA CHARACTERISTICS

PARAMETER FORM ACCURACY REMARKS
Soil Sampler

Azimuth 0-5v 7 bits Sample one/minute

Reach 0-5V 7 bits Sample one/minute

Yoltages (2) 0-5V 7 bits Sample one/second .

Currents (2) 0-40mV 7 bits Sample one/second Durlnfg. two hlours of
Direction B.L. 1 bit Sample once/two seconds operation onlty

Foot Position | §-5Y 7 bits Sample once/four seconds |

3. COMMAND AND SEQUENCING SUMMARY

MAXIMUM MAXIMUM MODE/
COMMAND TYPE NRT, DELAY PROPORTIONAL
& TOLERANCE | VALUE & TOLERANCE | TIME OF OCCURRENCE
Sampler Power On | D-NRT-R&NR h#1m '
Sampler Power Off | D-RT-R&NR Upon Sample Complete
Sample Azimuth P-RT-R 120 Values
Sample Reach P-RT-R
Foot Position P-RT-R

D — Discrete

P -~ Proportional

NRT — Non Real Time

RT - Real Time

R ~ Radio
NR -~ Non Radio
BL -~ Bi-level
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detector will make in situ measurements. Since many experiments depend on the sampler,
a design for maximum reliability is essential.

The major safety consideration is protection from accidental actuation of the
deployment mechanism or drill.

14.2.1.8 Test Requirements - Circuit continuity checks and simulated functional

sequencing tests will be performed to verify proper operation of equipment after
installation in the spacecraft.

14.2.1.9 Development Requirements - All elements of the surface sample acquisition

equipment are of proven design and no long lead time item developments are required.
Compatibility tests for total system operation with the soil sampler, processor
and instruments will be necessary during the development of the sampler.

14.2.2 Surface Sample Processing Equipment - The purpose of the processing equip-

ment is to take the raw material coming out of the sample acquisition device and
process it to produce samples with the three particle size ranges required for the
science instruments, 0 to 500/y » 50 to SOO/u , and 0 to ZOO/u . The processor
receives up to 380 em3 of raw material, if needed, and provides 92 cm3 of processed
samples to the instruments. The total volume required is determined primarily by
the alpha spectrometer.

14.2.2.1 Equipment Identification and Usage - The major elements of the processor,

Figure 14.2-6, include two storage bins, three particle size separators, material
transportation devices, sample quantity measuring device, system purge devices,

processor control programmer, and a low pressure gas supply. The processor block
diagram, Figure 14.2-7, illustrates the sequence in which these elements are used.

Storage Bins - The storage bins are used to retain surface sample material until

a desired quantity has been accumulated and until the material is required. The
first storage bin has a capacity of 40 em3 and is used as a hopper. The second

bin is used as a weighing bin for surface sample particles which have passed through
the 500 micron screen. The weighing bin is spring mounted and calibrated such that
the difference in the force required to move the bin to a specified location along
its vertical axis, before and after filling, will indicate the weight of the con-
tents. The method of moving the bin along its vertical axis is through a solenoid
type mechanism. Both bins have full-bin indicators activated by the blockage of
light from one side of the bin to the other by the build up of material. The weigh~
ing bin has a second light blockage indicator to detect the presence of a minimum
amount of material.

O Particle Size Separators - The particle size discrimination and separation

devices process surface samples such that particles below a certain size

) 14.2-9
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are passed while particles above that size are rejected. One device is
provided to pass particles of less than 500 microns in largest dimension,
one device to pass particles of less than 200 microns, and one device to
pass particles of less than 50 microns. The 500 micron device consists of
a rotating drum filter screen. The particles under 500 microns pass through
the cylindrical screen while the larger particles continue through the
center of the drum and are discarded. The 50 micron device utilizes low
pressure gas to provide a pneumatically activated swirl such that the
larger and heavier particles are passed to the outer periphery of the
device while the lighter particles and gas depart through a central open-
ing. Separation is based on the ratio of aerodynamic drag to particle
mass. The 200 micron devices will be similar to the 500 micron devices.

o Material Transportation Devices - Three methods of transporting materials

are utilized:

a. A belt and cup conveyor is used at the interfaces between the surface
sampling unit and the processor.

b. The material is transported through tubes by means of short bursts of
pressurized gas when particle sizes and quantities are small.

c. The remainder of the transport is by gravity in drop chutes.

o Sample Quantity Measuring Device - The sample quantity measuring devices

for the experiments consist of sample cups of the desired volume and a
scraper. The cup is over filled and the scraper removes the excess,

leaving only the desired quantity.

o System Purge Devices - A system of ports and gas lines is provided. When

—

the ports are opened, the system is purged of all residual materials by a

pressurized gas flow.

o Control Programmer - The control programmer controls the sample processor

with the proper timing and in the correct sequences. The control program-
mer utilizes solid state electronic devices.

0 Low Pressure Gas Supply - A gas supply is provided for pneumatic sample

transportation and for the gas purge.

14,2.2.2 Design Requirements and Constraints - The surface sample processing

equipment design, construction, and operation will satisfy the constraints and

14.2-12
REPORT F694 ¢ VOLUME IIT ¢ PART C o 31 AUGUST 1967
MCDONNELL ASTRONAUTICS



requirements of the "1973 VOYAGER Capsule Systems Constraints and Requirements
Document," dated January 1, 1967 and May 18, 1967. The surface sample processing
subsystem will operate from a power source voltage range of 23 vdc to 33 vdc.
Maximum power requirements will not ‘exceed 45 watts. Average power will not
exceed 10 watts for a total of 40 minutes maximum operation time. As much as 380
cm3 will have to be processed and the required output is 92 cm3 of samples graded
into three size ranges.

14.2.2.3 Physical Characteristics - The subsystem weight is 8.0 1bs. Total volume

is 420 cubic inches. The overall configuration is rectangular with dimensions of
6" x 7" x 10".

14.2.2.4 Operation Description - Upon receipt of a surface sample from the Sample

Acquisition Subsystem (see 14.2.1), the processing equipment conveys the sample to
the raw material hopper. This operation is continued until the subsystems are
deactivated externally or until the processing unit provides a signal to the sample
acquisition unit indicating that either the weighing bin or the raw material
hopper is full. The sample material passes through the raw material hopper,
through the 500 micron screening process, through the weighing bin, and is de-
livered to the metabolism and growth experiments. That material which goes to

the growth experiment receives an additional screening to filter out particles
below 50 microns in size which are discarded. The proper sample quantities are
then delivered to the experiments. Following delivery of material to the metabol-
ism and growth experiments, the exit port on the weighing bin is closed and the
bin is allowed to fill. At this time the contents of the bin are weighed and the
results supplied to the telemetry subsystem. Following weighing, sample material
is passed through the 200 micron filter for the gas chromatograph until the
desired quantity is obtained, then the sample is delivered to the gas chromato-
graph. At this time, unless the weighing bin lower quantity indicator indicates
inadequate sample bulk, the remaining bin contents is spread evenly onto the
sampling pan of the alpha spectrometer. In the event of screening failures,
indicator malfunction, or disproportionately large particle size, material is
transferred from the raw material bin directly to the experiment sample measuring
devices, thereby bypassing all screening and the weighing bin. In this situation,
the needs of the metabolism, growth, and gas charomatograph experiments are
supplied first and the remaining material is supplied to the alpha spectrometer.
After all operations have been performed with a given sample, the sample processing

equipment is gas purged of all remaining trapped or unused sample material in

14.2-13
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preparation for taking another sample. A total of four complete soil processing
operations are completed within 40 minutes accumulated operating time. It should
be noted that although only four complete soil processing operations are done,

the number of samples and sample size to a given experiment is variable depending
on the programming and on the number of different sample quantity measuring devices

provided.

14.2.2.5 Performance Objectives - The basic performance objectives are the

delivery of soil samples of proper particle size and quantity to the desired

experiment, as summarized in Figure 14,2-8 and 14.2-9.

14.2.2.6 Interface Definition - Interfaces of the subsystem with other subsystems

is shown diagrammatically in Figure 14.2-10. The electronic interfaces are des-

cribed in detail in Figure 14.2-11.

Raw Surface Material - Surface sample material (particle size up to 1.5 mm in dia-

meter) will be provided in quantities as required by the processor (380 em3 maxi-

mum) .
14.2.2.7 Reliability and Safety Considerations - For operational reliability:

Actuators must function when called upon.

Status indicators (including full-bin indicators) must report status
correctly, and program commands must be activated.

The three screening systems must not clog or choke up.

d. The raw sample delivered to the processor must contain a sufficient per-
centage of desired particle sizes to meet experiment sample needs without
unproductive expenditure of time. ,

Of these, the actuators attain reliability by use of rugged proven designs, by
protection of transmissions against dust damage and by use of space qualified dry
film lubrication at all rubbing surfaces. Status indicators are primarily for
programmer control and for malfunction analysis. Indication of fullness is merely
the blockage of light to a photo cell by the pile up of sample material in the
upper, narrowed section of the bin.

The separation and discrimination functions of the 500/Land 200/*.screens may
be more effectively performed, if necessary, by using tumbling weights as agita-
tors to prevent caking and clogging. The SO/L_pneumatic swirl is designed to
respond to purging, if for any reason, it becomes choked with materials. A devel-

opment testing program is needed to determine the most practical and reliable

design.

14.2-14
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SCIENCE EXPERIMENT PROCESSED SAMPLE REQUIREMENTS

PARTICLE QUANTITY || NUMBER MINIMUM | SAMPLE WITH
SCIENCE SIZE PER ‘ OF TOTAL RESIDUAL &
EXPERIMENT RANGE EXPERIMENT |'SAMPLES SAMPLE SPILLAGE
(DIAM.) >cm3 REQUIRED PR ALLOWANCE
. . cpd
a-Scattering I g} ow 500 24 3 72 72
Spectrometer elow #
Metabolism Below 5004 0.15 60 9 15
Growth 50u to 500u 0.015 5 0.1 1
Gas
Chromatograph | Below 200y 0.15 4 0.6 4
Total 92

BATCH PROCESSING REQUIREMENTS

Figure 14.2-

SAMPLE BATCHES
No. 1 No. 2 No. 3 No. 4
SCIENCE EXPERIMENT AND (1st hr.) (2nd hr.) (10th hr.) (18th hr.)
PARTICLE SIZES REQUIRED (cm3) (cm3) (cm3) (cm3)
Metabolism
Below 500 15 - - -
Growth
S0p to 500 1 - - -
Gas Chromatograph
Below 2004 1 1 1 1
Alpha-Spectrometer
Below 5004 - 24 24 24
Total of Processed Samples (cm3) 17 25 25 25
Figure 14.2-9
14.2-15
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SURFACE SAMPLE PROCESSING EQUIPMENT INTERFACE DIAGRAM

INPUTS

OUTPUTS

Test Programmer

Raw Surface Material

380 cm3

# Telemetry Subsystem

» Sample Acquisition
Subsystem Logic

Electrical Power

28 £5 Vdc

» Samples (92 cm3) to:

Gas Chromatograph
Metabolism Experiment
Growth Experiment
Alpha Spectrometer

> Surface
Sample
—»| Processing
Equipment
>
>

Commands

REPORT F694 ¢ VOLUME III ¢PART C
MCDONNELL ASTRONAUTICS

% Command Subsystem
(Status Signals)

Figure 14.2-10
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ELECTRONIC INTERFACE SUMMARY

DATA:
P ARAMETER FORM ACCURACY SAMPLE RATE REMARKS
Gas Supply Pressure 0-40mV 7 bits One/Hour
Density (Weight) 0-5v 7 bits 3 Samples Total,
on Command
Purge Status B.L. 1 bit Sample One/Minute
Bin Ready (3) B.L. 1 bit Sample One/Minute
STATUS SIGNALS FUNCTION
Processing Complete To Sequencer
Density Measurement Ready Data System Alert
Spectrum Samples Ready For Sequencing
G.C. Samples Ready For Sequencing
Growth Samples Ready For Sequencing
Metabolism Samples Ready For Sequencing
POWER:
AVERAGE VOLTAGE PEAK DURATION
10w 29 * §Vdc 45W 40 Minutes

COMMAND AND SEQUENCING SUMMARY

MAXIMUM MAXIMUM
COMMAND TYPE NRT,DELAY&] PROPORTIONAL MODE/TIME OF OCCURRENCE
TOLERANCE|VALUE & TOLERANCE
Processing Power On ID_NRT_R&NRI 1h + Im _

Processing Power Off|D—_RT-R&NR

Upon Process Complete

Density Read D-RT-NR Upon Density Measurement Ready
Clock D-RT-NR

D - Discrete

P — Proportional

NRT - Non Real Time

RT - Real Time

R — Radio
NR — Non Radio
BL - Bilevel

REPORT F694 ¢ VOLUME TIII
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In the event the particle size population is disproportionately distributed
toward the larger diameters,or if any of the indicators have malfunctioned, a
command override can open the valve immediately below the raw material hopper to a
bypass line, which then feeds unprocessed materials directly to the quantity
measuring devices of the metabolism, growth and gas chromatograph instruments.
After allowing time for their requirements to be fulfilled, another valve is
opened and the sample requirements for the alpha spectrometer will be supplied.
This same alternate path can serve for emergency operation in the event of failure
of one or more of the screening systems.

14.2.2.8 Test Requirements - Type approval and flight approval qualification

tests will be conducted on the sample processor before mounting it on the surface
laboratory. After mounting, testing will primarily consist of circuit continuity
checks, functional sequencing, and gas pressure measurements to verify operational
compatibility with the surface laboratory and other components.

14.2.2.9 Development Requirements - There is very little precedent for an automa-

tically operated system similar to the sample processor although its individual
components do not involve unique operations. Therefore, after establishing pre-
liminary proportions, the actual design must begin as a breadboard model and be
tested with a representative variety of simulated Mars soil samples. Choking of
lines, poor outflow of material from bins, clogging of screening systems and grit-
jamming of valves or of quantity measuring devices are examples of potential pro-
blems requiring further consideration.

14.2.3 Subsurface Probe Mechanism - The purpose of the subsurface probe is to

make measurements of the soil temperatures below the surface and to obtain samples
of gases trapped beneath the surface for analysis by the gas chromatograph. This

section describes the entire probe except for the temperature instrumentation which

on 14.3.10

g dicrucecad
S QLslusseg o SelediV.

14.2.3.1 Equipment Identification and Usage - The subsurface probe mechanism,

Figure 14.2-12, consists of the probe structure, probe deployment mechanism, gas
sampling vents and tubes, and gas pump. The subsurface probe temperature sensors
defined in Section 14.3.10 are mounted within the hollow probe. The probe mechan-
ism is used to implant the gas sample acquisition ports and temperature sensors
below the soil surface after the Surface Laboratory has landed.
0 Boom - The boom is an elliptical tube shaped to clear the Capsule Bus
Lander for a soil surface penetration 30 inches below the plane of the
lower surface of the laboratory and for positioning the probe at a radius

of 60 inches from the boom pivot on the laboratory. Boom stiffness keeps

14.2-18
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SUB SURFACE PROBE DEPLOYMENT MECHANISM

15cm

22 cm

30 cm

Stowed

7 Beam and Belt Drum
/of Actuator Mechanism

Pyrotechnically —/ \
Actuated Cylinder WK AN
1/20 Scale 0,
Ve

~
~
s
4

Deployed—//

Figure 14.2-12
14.2-19
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deflection during probe penetration small and minimizes the tendency to
elongate the hole about the probe. Gas tubing and wiring associated with
the sensors pass through the boom.

o Probe - The probe is a convex-contoured structure with provisions for four
gas sampling ports plus the internal installation of associated gas tubing,
and nine temperature sensors with their wiring. The external surface of
the probe is recessed at each gas port to provide protection for the port
during surface penetration.

0 Actuating Mechanism - The actuating mechanism consists of a clamp for

stowing the probe and a pyrotechmic actuator and linkage unit for deploy-
ing and imparting energy to the probe for soil penetration. Both the
clamp and actuator are pyrotechnically actuated in simultaneous operation.
The actuator and linkage provide approximately uniform torque to the probe
and deliver over 1000 pound-inches of kinetic energy, resulting in a nomin-

al impact velocity of 55 ft/sec.

o Gas Sampling Ports and Lines - The gas intake port is an 0.15 inch diameter

opening in a protected recess of the probe and the entrance of dust is
restricted by a 60-mesh screen. The tube for conducting the gas sample to

the pump is 0.060 inch I.D. and is carried within the boom.

0 Gas Sampling Pump - This expansion pump, mounted inside the Surface Lab-

oratory, draws in subsurface gas samples through the probe and transfer
those samples to the gas chromatograph for analysis. Displacement per
stroke is 16 cm3. The pump is operated by spring action during intake
and by external gas pressure during discharge.

14.2.3.2 Design Requirements and Constraints - Deployment of the probe into the

soil is accomplished with minimum disturbance to the original surface conditions.
with the surrounding scil
length. Location of the probe will be beyond the shadows cast by the Capsule Bus
Lander during at least 50 percent of the daylight period.

14.2.3.3 Physical Characteristics - The configuration of the subsurface probe

mechanism is shown in Figure 14.2~12. The maximum weight of the probe mechanism,
including the temperature transucers and associated gas lines and pump, is 6.0 lbs.

The pump is 4" x 5" x 6". The physical characteristics are listed in Figure 14.2-13.
14.2.3.4 Operation Description - The subsurface probe mechanism operates within

16 to 18 minutes after landing of the Surface Laboratory. The electro-explosive

device (EED) control module (Section 6.0) provides ignition power to the pyrotechnic

14.2-20
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TABLE OF CHARACTERISTICS

SUBSURFACE PROBE MECHANISM

Penetration Depth: 30 cm
Deployment Swing Radius: 5 feet

Pump
Size: 41In.x5in. x 6 in.

L ocation: Equipment Section

Purpose: Draws in subsurface gas through the probe vents and transfers the gas to the
gas chromatograph

Weight (Including gas sampling ports, tubes and pump,
also temperature sensors and lines.) 6.0 1b

Figure 14.2-13
14.2-21
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clamp and deployment actuator which drives the probe through at least 200 degrees
rotation from the stowed position into the surface.

The gas sampling pump is activated when the gas chromatograph operating
cycle requires a subsurface gas sample for analysis. The pump vacuum draws the
subsurface gas and transfers the sample to the gas chromatograph. Subsurface
gas sample analysis is scheduled:

a. once during the day

b. three times near sunset

c. once during the night

d. three times near sunrise

14.2.3.5 Performance Characteristics - The probe achieves an impact velocity of

55 ft/sec. This energy is sufficient to embed the probe to its full depth (30 cm)
in cohesionless sand with a 50 percent margin to accomodate a small admixture of

rubble.

14.2.3.6 Interface Definition - The subsurface probe mechanism provides for instal-

lation of the gas sampling and temperature sensors and deploys the sensors at a
range of depths below the soil surface. The Surface Laboratory structure subsystem
provides support and load points for mounting the mechanism. Clearance of the
probe sweep envelope is provided during deployment. Electrical impulse to accuate
the pyrotechnic device is provided by the control module, Figure 14.2-14.

14.2.3.7 Reliability and Safety Considerations - All pyrotechnics meet the 1 amp -

1 watt no-fire requirements. The deployment mechanism, which uses an enclosed
pyrotechnic cylinder, is designed so that it will not explode even if the piston
is prevented from moving when the pyrotechnic is discharged.

There are no functionally redundant measurements for the subsurface tempera-

ture measurements and subsurface gas sample analysis which will provide data if

the probe fails. The spectral measurements and vehicle temperatures will however,
permit an evaluation of the surface temperature in the absence of probe data.

14.2.3.8 Test Requirements - No operation preflight or in-flight tests are

required for the mechanism other than simple transducer voltage and continuity

measurements,

14.2.3.9 Development Requirements - The probe mechanism is of proven design and

no long lead item developments are required. Development will be directed toward
meeting the objectives of obtaining surface penetration in a manner such that the
temperature sensors will be in close contact with the soil and the gas sampling

ports will ingest subsurface gas rather than surface atmospheric gases which leak

down along the sides of the probe.

14.2-22
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INTERFACE DIAGRAM SUBSURFACE PROBE MECHANISM

INPUTS

Pyrotechnic
Signal

Pump Power On
Pump Power Off

Valve Steps

: : OUTPUTS

| Pyrotechnic |

l —P Actuator I

| and Clamp I

I — | > Pump Gas Pressure
I | 1 sample/hr

! $+ Pump and l 7 bits/sample

| Gas Sampling I 0-40 mv

> 4 Tubes

! I—b Valve Position

! i 4 samples during each
| sampling period

|

I

— e — — —

'4—— Mechanical Interface
1

Nine Thermocouples
and Lines mounted
in Probe

Figure 14.2-14
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14.3 SCIENCE INSTRUMENTS - The functions of the science instruments which make

measurements and observations required for scientific experiments on the surface

are listed in Figure 14-1, Definitive functional descriptions of each scientific

instrument appear in subsections 14,3.1 through 14.3.10.

14.3-1
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14.3.1 Facsimile Camera - The function of the Facsimile Camera is to perform

all imaging on the Mars surface including a 90° x 360 stereoscopic panoramic
survey of the terrain surrounding the landing site and five 24°x24° high
resolution frames of the soil sampling and experiment areas. The resolution

for the panoramic survey is 0.3° while the five individual frames have a resolu-
tion of 0.06° which is necessary for observation of fine detail in the surface
sampling areas.

14.3.1.1 Equipment Identification and Usage - The equipment consists of two

facsimile cameras (FAC) mounted on opposite sides of the SLS, each having the
capability to operate at a resolution of either 0.3° or 0.06°. The physical
arrangement of a camera is shown in Figure 14.3.1-1. To obtain the stereo
panoramic survey, both cameras are operated for a full 360° at 0.3° resolution.
Stereo reproduction of features will depend upon the relative location with
respect to the cameras. Features on a line connecting the two cameras yield
no stereo information and features at right angles to this line yield maximum
stereo information.

The five 240x24° images of the experimental and surface sampling sites will be
obtained by commanding the respecti the correct azimuth an
elevation angles using the on-board programming system. If areas of special
interest appear in the panoramic scan, they can be viewed at higher resolution by
reprogramming one of the five 249x24° high resolution frames by means of an Earth
override command.

The major components of this camera are a fixed focus optical assembly, an
electromechnical scanning assembly, scan motor drive electronics, a photo-
electric transducer, an amplifier, and for purposes of correlation, a
synchronously driven in light chopper. A schematic block diagram of the camera
in Figure 14.3.1-2 shows the relationship of these major components.

Optical Assembly - The optical assembly consists of an objective lens which
focuses the radiation through a pinhole onto a photosensitive surface. The

size of the pinhole and the focal length determine the instantaneous field of
view which determines the resolution of the camera. A three inch focal length
with a 12.5x103 inch pinhole and a six inch focal length with a 5x10~3 inch pin-

hole provide resolutions of 0.3° and 0.06°, respectively.

14.3-2
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VOYAGER IMAGIING FACSIMILE CAMERA

Cover Actuator Scan Sync Pickup

Mirror Cams

/ Cam Selector

/Scon Mirror

| Mirror Trunnion

Scan Head Trunnion

30°

Mirror Drive Motor

Long F.L. Lens (6 in.)

-

. Window Variable Lens Aperture

/ Protective ——wi

Covers(2) Light Baffle

Short F.L. Lens (3 in.)
(Folded Position)

60° I | — Light Baffle
— — Electronics

|/ Color Filter Wheel

o —
S ght Chopper
e —

Signal Amplifier

Pressure & Dust Seal

Photo-Sensor
PrecmPlifier——/

Azimuth Positioning

P PSP PSS 7

Azimuth Position Pickup

A\

:

Wire Service Loop

s
»

R

Figure 14.3.1-1
14.3-3
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The lens diameter of 1 inch and the 6 inch focal length provides an F/6 system

for the high resolution images. For this high resolution system 0.06°

at F/6, all points from 20 feet to infinity are in focus for one camera.

The other facsimile camera near the sampler will be focused for high resolution
views of the sampling area but not objects far away. For the lower resolution
system, 0.30 at F/3, the depth of field extends from 4 feet to infinity.

Thus, a satisfactory depth of field range for both cameras is available.

Scanning Mechanism - Elevation and azimuth scanning is performed mechanically in

the facsimile camera. The high rate elevation sampling is accomplished using an
oscillating mirror, shown in Figure 14.3.1-1, with the elevation angle range
controlled by a cam on the mirror drive. Every 0.2 second, one line of the
scene, one resolution element wide, is scanned. Simultaneously, and in syn-
chronism, the entire mirror assembly is rotated in azimuth so that the

next mirror scan will see an adjacent line displaced by one resolution element.
Both the elevation and azimuth scan rates are derived from hysterisis type

A.C. motors which are synchronized using a common frequency standard.

icer — The beam of light from the scanning mechanism is focused through a
pinhole onto a silicon detector which has a spectral sensitivity from 0.5 to

1.1 microns and a time constant of several microseconds.

The operating temperature of this detector must be calibrated and controlled
since it functions similar to a temperature sensitive resistor. A Peltier
cooler is used to stabilize the detector temperature slightly below that of the
coolest internal operating temperature to guarantee a known operating condition.

14,3.1.2 Design Requirements and Constraints - The design requirements and

constraints are:

o The cameras must be mounted so that a relatively unobstructed view o
the features to be imaged is obtained.

o Camera operation must be performed during a period of no SLS motion
caused by disturbances such as experiment deployment.

o The data system must accept data from each facsimile camera at a rate
of 12,000 bits/second while recording 240 x 240 images and 9,000
bits/second during panoramic scanning.

0 The dynamic range of the camera must be large enough to operate in light
levels existing with or without cloud cover, albedo values between

0.05 and 0.35, and lighting levels corresponding to landing at latitudes

14.3-5
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from 109N to 400°sS.

o The field of view coverage for the panoramic survey should include
imaging of the sampling area, subsurface probe area, and the in situ
metabolism instruments.

o Thermally, the cameras must be designed to be as completely self-
sufficient as possible since they protrude above the SLS envelope.

14.3.1.3 Physical Characteristics - The two cameras are mounted on the SLS as

shown in Figure 14.3.1-3. Size, weight and power requirements are shown in

Figure 14.3.1-4.

To solve the problem of thermal control, the external camera structure is formed

of both radiatively reflective and insulative material to create as close to an

adiabatic chamber as possible. Low environmental temperatures are expected to
the most troublesome, thus an internal heater is employed to regulate the

compartment temperature during the brief periods of imaging. Demands on the

be

environmental control system are small since the camera operation is programmed

to occur under favorable conditions. The camera is warmed up for 15 minutes
before imaging operation usingy, k5 watt heaters.

17 2 1 A Nm vam s S 1 1
14.3.1.4 Operation Description - Th

e operation of the camera will be programmed

to occur when experiment deployment is not scheduled as shown in Figure 14.3.1-5.

Operation is not dependent upon wind conditions because the cameras are rigidly

mounted to the SLS.

Operation will be commenced after all experiments are deployed and when the sun

angle is between 300 to 60°, mid-morning or late afternoon, so adequate contrasts

due to shadows exist. A 90° x 360° panorama requiring 240 seconds will be secured

initially with input to the data storage at the rate of 9,000 bits/second for a

total storage of 2.16 x 10° bits during the 240 second period. Following the

first panoramic scan, a second panorama will be made with the other camera

to obtain the stero information. Time sequencing of this operation is shown in

Figure 14.3.1-6. With the approximate 4 foot baseline between the two cameras
stereo ranging error will be +13 feet at a range of 100 feet for the 0.3
resolution panoramic scan.

In the afternoon of that same day, after the panoramic imaging is completed,
the cameras are sequentially pointed at the sampling and experiment areas.
Images of 24° x 240 coverage with a 0.06° resolution are obtained. Data out-
put to the temporary storage is at the rate of 12,000 bits/second with a total
storage per image of 0.96 x 106 bits. The total data output for the two
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FACSIMILE CAMERA SYSTEM SLS LOCATION

Maximum Stereo

Viewing

Facsimile Cameras '
-

Maximum Stereo
Viewing

Figure 14.3.1-3
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PHYSICAL CHARACTERISTICS AND POWER REQUIREMENTS (TYPICAL)

COMPONENT WEIGHT VOLUME POWER
Camera No. 1 61b 125 in.3 6 watt
Camera No. 2 6 125 6
Electronics 3 120 3
Total 15 1b 370 in.3 15 watt

REPORT Fé94 « VOLUME TIII e PART
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CAMERA NO. 2
Data Out

Power In

CAMERA NO. 1
Data Out

Power In

SURFACE IMAGING CAMERA TIME SEQUENCE

90° x 360° 24° x 24°
9000 BPS-240 Sec 2 Images, 12,000 BPS
" 2.16 x 106 Bits n 160 Sec, 1.92 x 106 Bits
Warmup Warmup
Standby 2.95 Watt Hr. Standby 2.7 Watt Hr.
Operation Operation
90° x 360° 24° x 24°
9000 BPS—-240 Sec 3 Images, 12,000 BPS
|| 2.16 x 106 Bits " 240 Sec, 2.88 x 106 Bits
Warmup Warmup
Operation ; 2.95 Watt Hr. Operation 2.7 Watt Hr.
/ — Standby / /—Sfandby
s/
| | I [ I | go !:urf;er |rT1<:c§;ingf
uring Remainder o
0 2 4 6 8 10 12 Mission

Landing Time — hr.

Figure 14.3.1-5
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TIME SEQUENCE PROFILE PANORAMIC IMAGING CAMERA

l Antenna Erection

Event

L

Heater Power On

Field Stop Select

Lens Select

Motor No. 1 and No. 2 and Detector Temperature Sample

Camera No. 1 Select

]
|
|
| Power On
|
|
| Open Window and Initiate Imaging

' Imaging Complete

I Camera No. 2 Select

I Initiate Imaging

C: Data to Storage
| Imaging Complete
| Power Off

| | | 1 | Heater Off ]

300 600 900 1200 1500 1800

Elapsed Time —~ seconds

Figure 14.3.1-6
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panoramic and five experiment site scans is 9.12 x 100 bits.

The camera produces a picture by systematically scanning the surroundings in a
pattern similar to that of a television scan. A telescope having a very narrow
field of view scans the scene in a series of closely spaced lines. The brightness
data from each minute element of the scene is converted into an electrical signal
for transmission to Earth. By performing this process in reverse with playback
equipment at the Earth receiving station, an accurate reproduction of the scene
is produced.

A time sequence profile of the camera internal operation during a 360° pan

is shown in Figure 14.3.1-7. The profile shows that elevation position changes
quite rapidly, 1200 cycles for every cycle of azimuth scan. The azimuth scan
is a smooth continuous drive. At the end and beginning of each elevation

scan, a synchronization pulse from a reference light source is added to the
optical signal. The synchronization pulse is used to synchronize playback
equipment.

The camera operates at a fixed size aperture regardless of the surface lighting
conditions because the photo detector has an adequate 100,000:1 dynamic range.
This compares to 100:1 for vidicons which require aperture size control as a
function of lighting conditions.

Resolution change from 0.3° to 0.06° is performed by a change of the effective
focal length and field stop of the camera.

Camera instrumentation includes field stop position, both lens positions,

motor and compartment temperatures, detector temperature, and azimuth position
resolved to every 3°.

14.3.1.5 Performance Objectives ~ The prime performance objectives are:

o Two 360° x 90° panoramas at 0.3° gross resolution to provide sterescopic
pictures.

o Five 249 x 24° frames of the sample gatherer, subsurface probe, and in
situ biology experiment sites, at a resolution of 0.06°.

14.3.1.6 1Interface Definition - The 12,000 bit/second data rate output is one

of the most important interface characteristics of the facsimile cameras. Figure
14.3.1-8 identifies all functions interfacing with the cameras.

14.3,1.7 Reliability and Safety - Figure 14.3.1~-9 shows the probability of

obtaining a monoscopic and stereoscopic survey and imaging of the experiment sites.
The single monoscopic survey has a high probability of being successfully obtained

because redundant camera systems are used to provide separate surveys for the

14.3-11
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CAMERA OPERATION TIME PROFILE
FOR A 360° PANORAMIC PICTURE WITH +30° TO -60°
ELEVATION COVERAGE AND 0.3° ANGULAR RESOLUTION

Elevation +
L 7
Pols)mon - \ //
egrees t-3S d
80, 0.2 0. 239.8 240 1 - Seconds
360 |
Azimuth ——— I
Position — -
Degrees — |
00 V/l #{:‘: - t — Seconds
240
On I
Synchronization |
Pulse ' I
i A t-9S d
Off 0.2 0.4 L/1 239.8 240 ® 1 - Seconds

Figure 14.3,1-7
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PN IMAGING SUCCESS PROBABILITY

IMAGE PROBABILITY OF SUCCESS
Panoramic Survey 0.9936
Stereo Panoramic Survey 0.8464
24° x 24° Sites 0.9936

Figure 14.3.1-9
stereoscopic images.

14.3.1.8 Test Requirements - To assure that the data generated by the camera

represents the scene and that camera operates correctly, a number of tests are
made prior to the commencement of picture taking. Before installation, the
camera is electro-optically tested and calibrated. Any nonlinearities are noted
so that compensation can be provided during the playback phase. Focus and
internal alignment adjustments are also made before installation. Tests
verifying proper mechanical and electrical mating are made after installation in
the SLS by briefly operating the equipment.

Prior to descent to Mars and while still attached to the Orbiter vehicle,

an operational test will be made. A projected test pattern will be used to form
a reference image. This image will be transmitted on a high data rate RF link
to Earth for evaluation. After landing only those tests which show that the
camera is operational will be made.

14.3.1.9 Development Requirements - A large amount of analytic and hardware

development work has been performed on a facsimile camera suitable for a
lunar landing and a preliminary design has been formulated for VOYAGER. The

a camera suitable for use in the Mars environment is not expected

to present any serious problems if given the proper emphasis.
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14.3.2 Atmospheric Pressure Transducer - This instrument obtains periodic

measurements of atmospheric pressure on Mars during the entire surface mission.

14,3.2.1 Equipment Identification and Usage — The instrument for obtaining the

atmospheric pressure measurements is a variable capacitance device in which a
pressure difference between two sides of a diaphram or membrane causes it to def-
lect, and the amount of deflection is detected by capacitor plates rigidly mounted
near the deflecting member. The capacitance outputs are processed by an electronics
circuit to provide an output signal proportional to applied pressure. Figure
14.3.2-1 presents a functional diagram of the pressure transducer.

14.3.2.2 Design Requirements and Constraints - The mission objectives are to make

a survey of local conditions in a 27  hour period and obtain the maximum amount of
useful data per data point taken, The transducing principle used must be indepen-
dent of temperature phenomena as possible to determine atmospheric properties
independently of each other to the maximum extent possible. The transducer must

be able to withstand one atmosphere of pressure in a powered configuration without
damage since prelaunch checkout procedures are, in part, conducted in Earth ambient
conditions.

14,3.2.3 Physical Characteristics - Figure 14.3.2-2 lists the ph

istics and Figure 14.3,.2-3 presents the configuration of a typical transducer,

14.3,2,4 Operation Description - The operation of this transducer is based on

pressure-induced deflections causing corresponding capacitance changes which result
in production of a de output voltage proportional to a ratio of the two capacitan-
ces. The sensor utilizes two capacitances to obtain linearity of output. Figure
14.3.2-4 illustrates the transducer internal configuration. A typical output
circuit which will provide a dc output proportional to applied pressure is shown
in Figure 14.3.2-5. A positive output from the oscillator results in a positive
current being delivered to the filter capacitance (C3) and load resistor (RL) from
the upper gauge capacitor (C{) while the current from the lower gauge capacitor (Cy)
is routed through a diode to ground. When the oscillator output is negative, a
negative current is delivered to the filter capacitor and load resistor from the
lower gauge capacitbr while the upper capacitor current is passed through a diode
to ground. The magnitude and direction of the capacitance difference is indicated
by the magnitude and direction of the load resistor current.

During the surface mission, this sensor will be activated and read out period-
ically in the sequence shown in Figure 14,3,2-6 to obtain diurnal pressure variation

measurements. Since the periods around sunrise and sunset are the periods of

14.3-15
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TYPICAL PRESSURE TRANSDUCER FUNCTIONAL SCHEMATIC DIAGRAM
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ATMOSPHERIC PRESSURE TRANSDUCER PHYSICAL CHARACTERISTICS

Size 2'* diameter x 2°* long
Volume 6.28 cubic inches
Weight 1.0 Ib

Case Material 304 Stainless Steel

Figure 14.3.2-2
14.3-17
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TYPICAL ATMOSPHERIC PRESSURE TRANSDUCER CONFIGURATION DRAWING

Figure 14.3.2-3
14.3-18
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INTERNAL CONFIGURATION OF TYPICAL VARIABLE
CAPACITANCE ATMOSPHERIC PRESSURE TRANSDUCER
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; N\ Side
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Electrical Z § Electrical
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N
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Pressure)

Figure 14.3.2-4
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ATMOSPHERIC PRESSURE TRANSDUCER MISSION SEQUENCE
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largest atmospheric parameter variation, the transducer will be sampled once per
minute during the periods one hour before and one hour after sunrise and sunset to
observe parameter variations. During the remainder of the diurnal cycle, pressure
will be measured at a rate of four samples per hour. This data will enable the
reconstruction of an accurate landing site diurnal pressure profile,

14.3.2.5 Performance Objectives - The accuracy of the pressure transducer is

% 0.5% of full scale over the range from 0 to 0.75 psia. Resolution is limited

to 0.001% of full scale, but further limitations in resolution arise when the out-
put signal is operated on by the analog-to-digital converter in the Telemetry
subsystem. Time constants impose no restrictions since worst-case time response is
on the order of 50 milliseconds and removal of an input filter can reduce this by

a factor of 5 or more if it becomes desirable. Stability is sufficient (6 month
maximum drift is 0.1% of full scale) to preclude the necessity of a calibration
after the vehicle leaves the launch pad. Figure 14,3.2-7 presents the performance
characteristics of a typical atmosphere pressure transducer.

14.3.2.6 Interface Definition - Mounting ,power, and telemetry interfaces must be

compatible with this instrument as shown by the interface diagram presented in
Figure 14.3.2-8. The pressure transducer is bolted to a deployable experiment mast
in an area which is protected from wind gusts and wind blown dust particles.

The unit will use 28 * 5 vdc power available from the Power subsystem and will
provide an output of 0 to 5 vdc to the Telemetry subsystem, The Telemetry sub-
system will perform the analog-to-digital conversion.

14.3.2.7 Reliability and Safety Considerations ~ To ensure reliable performance of

the pressure transducer, a post-sterilization calibration will be performed to
ensure that the reference pressure cell has remained sealed during exposure to the
thermal environment of the sterilization cycle. The mounting arrangement on the
Surface Laboratory will protect the transducer from shock, vibration, and acceler-
ation loads greater than transducer design limits,

Safety considerations require a burst pressure of 30 psi or more.

14.3.2.8 Test Requirements - No special tests other than simple voltage and

continuity tests are required for this instrument during both pre~flight checkout
and in-flight monitoring,

14.3.2.9 Development Requirements - The techniques and construction mechanisms

required to implement this pressure transducer are well within state-of-the-art
capabilities. Close control of welding techniques for reference cell seals is

required to avoid the possibility of the reference cell leaking after exposure to

14.3-22
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TYPICAL ATMOSPHERIC PRESSURE TRANSDUCER CHARACTERISTICS

Warm-up Time
Number of Measurements

Output Signal

Input Voltage

Input Power

Time constant at 1 psi
Accuracy

PARAMETER INSTRUMENT CHARACTERISTIC
Range 0 to 0.75 psia
Proof Pressure 23 psi
Burst Pressure 30 psi

60 secs max.

332 over a 27 hour period (60/hour
for 4 hours plus 4/hour for 23 hours)
0 to 5 vdc, single-ended

28 * 5vdc

1.4 watts

50 msec

+ 0.5% of full scale
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ATMOSPHERE PRESSURE TRANSDUCER INTERFACE DIAGRAM
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during the rest of the mission.
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the sterilization heat cycle.

instrument. Development effort is required to determine the magnitude and duration

|
The sterilization cycle causes a slight temporary calibration shift in the %
|
of this effect.
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14.,3.3 Atmospheric Temperature Transducer — This instrument obtains periodic

measurements of the atmosphere temperature on Mars during the entire surface
mission.

14.3.3.1 Equipment Identification and Usage - The instrument employed is a

platinum resistance element thermometer utilizing a resistance bridge output. A
functional block diagram is shown in Figure 14.3.3-1. The measured temperatures
will be correlated with time to obtain diurnal atmospheric temperature profiles.

14.3.3.2 Design Requirements and Constraints -~ The design of this instrument is

influenced by two primary factors:
0 measuring the temperature of interest with a minimum of other influences,
o and achieving both physical and operational compatibility with the inter-
facing subsystems.
Design of an effective atmospheric temperature transducer necessitates consider-
ation of direct solar radiation, heat conduction and wind effects. Direct solar
radiation effects can be largely eliminated by mounting the sensor in a shaded
area. Heat conduction effects are compensated by placing a thermal insulation
barrier between the sensor and its mounting point. Wind effects are minimized by
mounting the transducer in a louvered housing on the experiment mast. SL induced
effects on the measurements are minimized by locating the transducer away from the
main body of the SL.

14.3.3.3 Physical Characteristics - The temperature transducer is a platinum

resistance thermometer using a resistance bridge output circuit. The sensing
element is thermally insulated from the mounting points and the bridge should be
located either adjacent to the sensing element or in the mounting base. Figure
14.3.3-2 illustrates the physical shape and schematic of the sensor (and the
approximate dimensions). Figure 14.3.3-3 presents the physical characteristics
of the instrument.

14.3.3.4 Operation Description - The operation of this instrument is based upon

the knowledge of the resistance-versus-temperature relationship for a particular
material and a means for detecting resistance variations with changing temperature.
In this case a platinum sensing element is employed and a resistance brldge is

used to generate an output voltage which is proportional to the sensing element
resistance. During the surface mission, this sensor will be activated and read out
periodically in the sequence shown in Figure 14.3.3-4 to obtain diurnal temperature
variations, Therefore, the transducer will be sampled once per minute during the

one hour periods before and after sunrise and sunset. During the rest of the
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ATMOSPHERIC TEMPERATURE FUNCTIONAL BLOCK DIAGRAM

0 to 40 mvdc

Atmosphere
1 Sensing pre———mmeme———p| Resistance
Heat Flo Y Element Bridge

5.00 + .05 vdc
Figure 14.3.3-1

TYPICAL TEMPERATURE TRANSDUCER CONFIGURATION AND SCHEMATIC

Input —~
Sensor
I — _\ ‘\é\jl 2
> 1
©C o0O Output + O—@ HOutpuf -
OO0 1.9 § §

Input + Figure 14.3,.3-2

ATMOSPHERIC TEMPERATURE TRANSDUCER PHYSICAL
CHARACTERISTICS

Dimensions 1.0 in. dia x 1.9 in. long
Weight 0.5 pound total
Volume 1.7in.3

Figure 14.3.3-3
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ATMOSPHERIC TRANSDUCER MISSION SEQUENCE
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Pre-Mast-Erection Calibration
Mast Erection

\

Nominal
(9 hr -
15 min)

Temperature Transducer
Sampled 4 Times Per Hour
During This Period.

Sunset
-1 hour
Temperature Transducer
Sunset == 2 hr Sampled 60 times per hour
during this period.
Sunset
+ 1 hour

10 hr — ? Temperature Transducer

20 min Sampled 4 Times per hour
during this period.

N
3-

JUNriSe e VGMpiSad Gu Times per n
during this period.

Sunrise
+ 1 hour

Sunrise
— 1 hour
Temperature Transducer
e . [ Colad LN 4immac nnrl'\f\r

(3 hr) Sampled 4 times per hour

Nominal Temperature Transducer
> during this period .

EOM )

Figure 14.3.3 -4
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surface mission the transducer will be sampled at a rate of four samples per hour.
This will provide data for an accurate reconstruction of the diurnal temperature
profile at the landing site.

14.3.3.5 Performance Objectives - The accuracy of the temperature sensor is

T 1.0% of full scale over the range from 150° to 330°K. Although the element
sensitivity to temperature change is infinite, the parameter quantization accuracy
is limited by the Science Data Subsystem. Sensor interchangeability and stability
are sufficient to preclude the necessity of calibration with every element change
or extended duration non-operating period. Characteristics of the transducer are
shown in Figure 14.3.3.5.

14.3.3.6 Interface Definition -~ Mounting, radiation shielding, power, and tele-

metry interfaces are satisfied for this instrument as illustrated by Figure
14.3.3-6 which shows the interface diagram for the temperature transducer.

The mounting interface exists inside a louvered compartment atop the experiment
mast. The mounting flange will be either a bond-on or bolt-on piece having dimen-
sions compatible with space available and sensor environmental requirements. The
conduction shield is part of the transducer rather than in the transducer/mast
interface, so that thermal characteristics of the mounting interface are not of
paramount importance.

The radiation shielding requirement is satisfied by placing the transducer
inside the louvered container and orienting the louvered compartment such the
louver angle/solar angle relationships prevent solar radiation from impinging on
the sensor. :

Both 28 ¥ 5 vdc and 5.00 * 0,05 vdc sources are available from the SL power
system. The temperature transducer will use the 5.00 * 0,05 vdc level rather than
the 28 T 5 vdc level because of regulation and temperature transducer self-heating
considerations.

The signal from the resistance bridge is a 0 to 40 mvdc double-ended output
which is hardwired to the Telemetry subsystem for multiplexing and analog-to-digital
conversion,

The internal interface for the temperature sensor consists of a two wire con-
nection between the sensing element and the bridge.

14.3.3.7 Reliability and Safety Considerations - To ensure reliable performance

the mounting provisions for the temperature sensor must protect the sensor from
shock, vibration, and acceleration loads greater than sensor design limits. There

are no safety requirements peculiar to the inclusion of this transducer in the SL.

14.3-29
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TEMPERATURE TRANSDUCER CHARACTERISTICS

Range
Type

Input Voltage
Output Voltage
Accuracy

Number of Measurements

Installed Location

150°K to 330°K

Resistance Thermometer with Annealed
Platinum Sensing Element

5.00 £ .05 Vdc
0 to 40 mvdc, double- ended
+ 1% Full Scale

4/hour for 23 hours plus 60/hour
for 4/hours — 332 total

Inside Louvered Compartment On
Deployable Mast

Figure 14.3.3-5

ATMOSPHERIC TEMPERATURE TRANSDUCER INTERFACE DIAGRAM

Power 5.00 *3.05 vdc Atmosphere 0 to 40Jmvdc Most Remote
Subsystem =] Temperature —> Interface Unit
. Transducer :
Wind Gust
Protection
Solar Radiation Telemetry
Atmosphere Shielding L _S_ubﬁls_t_em__ —
Access | Structure Transducer sompled
' (Mast) at 60 samples per
hour during 2 hour
periods centered
around sunrise and
sunset and at 4
samples per hour
during the rest of
the mission
Input Output
Interfaces Interfaces

Figure 14.3.3-6
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14.3.3.8 Test Requirements - Preflight test requirements consist of standard volt-

age and continuity checks. There are no special in-flight checkout and monitoring
requirements.

14,3.3.9 Development Requirements - All the techniques and materials required to

implement this instrument are existing, therefore, no advanced development is

required to meet the temperature transducer requirement.
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14.3.4 Atmospheric Humidity Transducer - This instrument obtains periodic measure-

ments of the atmospheric humidity on Mars during the entire surface mission.

14.3.4.1 Equipment Identification and Usage - The humidity readings obtained will

be correlated with time to obtain diurnal atmospheric humidity profiles. This
data, together with data generated by other SL science instruments (surface,
atmospheric, and subsurface), will be correlated to provide an insight into the
physical processes occurring on Mars.

The instrument used to obtain the diurnal cycle humidity measurements is a dew/
frost point hygrometer with an impedance bridge output circuit. Figure 14.3.4-1
is a functional schematic diagram of the hygrometer.

14.3.4.2 Design Requirements and Constraints — The mission objectives, as applied

to this instrument, are to make a landing site survey of atmospheric humidity con-
ditions over a 27 hour surface operation period. The unit must be sterilizable per
the NASA specifications and must be able to operate in an Earth environment. The
heat sterilization cycle requires that the unit design satisfy three additional
requirements:

0 nonoperating pressures of 23.0 psi, and

o long term nonoperating exposure to elevated temperatures, and

0 adjustment features if the heat cycle causes some electronics shifts.
In addition to the above requirements, the transducers must tolerate without per-
formance degradation, all natural and induced environments encountered.

14.3.4.3 Physical Characteristics - The hygrometer used to obtain the humidity

profile measurements consists of an aluminum oxide sensing element which is con-
nected to an impedance bridge. The bridge output is rectified, filtered, and run
through a differential amplifier for conditioning to a level compatible with the
Telemetry subsystem input interface. The unit, excluding the sensor, is contained
in an assembly approximately four inches in diameter and 0.75 inches thick. The
mounting attachment for the sensor has not been determined, but the sensor itself
is approximately 0.25 x 0.5 x 0.04 inches. Figure 14.3.4-2 lists the physical
characteristics and Figure 14.3.4-3 presents a configuration drawing of the hygro-
meter.

14.3.4.4 Operation Description - The aluminum oxide sensing element consists of an

anodized aluminum plate which has a thin gold layer evaporated on its porous alu-
minum oxide layer. The aluminum plate and gold film form two plates of a capacitor.
Water vapor passes through the gold layer and changes the impedance characteristics

of the capacitor. The primary influence on the impedance change is the surface
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NOMINAL HYGROMETER CONFIGURATION DRAWING

Sensing Element

(.51In. x .25 In. x 0.04 In.)

Connector

Mounting Flange —

Figure 14.3.4-3
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resistance change in the aluminum oxide pores as water is absorbed on thenm.
Impedance of the sensor is measured by an impedance bridge whose output is then
rectified, filtered, and passed through a differential amplifier. Figure 14.3.4-4
defines the mission sequence and Figure 14.3.4-5 presents the instrument charac-
teristics of the hygrometer.

During the surface mission, this sensor will be activated and read out periodically
to obtain diurnal humidity variation measurements. Since the periods around sun-
rise and sunset are the periods of greatest atmospheric parameter variation, this
transducer will be sampled once per minute during the one hour periods before and
after sunrise and sunset. During the remainder of the diurnal cycle the trans-
ducer will be sampled at a rate of four samples per hour. This data will permit
reconstruction of an accurate landing site diurnal humidity profile.

14.3.4.5 Performance Objectives — The accuracy of this transducer will be such

that frost points in the lowest operating range of the instrument are determined
to +2°C and to within +0.5°C at the highest operating range. The response time of
the instrument must be on the order of seconds or less so that humidity variations
in the periods of maximum humidity change can be detected. Instrument stability
characteristics must be small enough to allow this transducer to be used with con-
fidence during the Mars surface mission.

14.3.4.6 Interface Definition - Mounting, power, thermal, and telemetry interfaces

must be compatible with this instrument as illustrated by the interface block
diagram presented as Figure 14.3.4-6.

The instrument is mounted inside the louvered container on the experiment mast.

The temperature inside this container at the sensor location will be at equilibrium
with the surrounding atmosphere temperature so that local heating and cooling effects
will not destroy the interpretability of the humidity measurements.

The hygrometer will use 28+5 vdc power available from the Power subsystem. Any
voltage level changing or regulation required beyond the 28+5 vdc will be per-
formed by the hygrometer electronics.

The sensing element will operate over the entire range of ambient temperatures
anticipated. However, the electronics will probably require a thermostatic heater
to maintain the electronics temperature at 0° + 50°C.

The output to the data subsystem will be raised to a 0 to 5 vdc signal by the
differential amplifier in the output circuit of the hygrometer. There may be more

than one bridge frequency utilized to provide extra resolution in some areas of the
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HUMIDITY TRANSDUCER MISSION SEQUENCE
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TYPICAL ATMOSPHERIC HUMIDITY INSTRUMENT CHARACTERISTICS

PARAMETER

INSTRUMENT CHARACTERISTICS

Range
Warm-up Time

Number of Measurements

Input Voltage
input Power
Output Voltage
Output Impedance
Response Time
Accuracy

Operating Temperature

Operating Pressure

Non-Operating Pressure

Gas Flow Velocity

Dew/Frost Points from —=110°C to + 30°C

60 Seconds Maximum

3320ver a 27 Hour Period (60/Hour for 4 Hours Plus 4/Hour
for 26 Hours)

28 +5 VDC

1.0 Watt Maximum

0 to 5 VDC Single Ended

2,000 ohms Maximum

30 Seconds Maximum

+ 2°C at ~110°C Frost Point to + 0.5°C at 30°C Dew Point

Sensing Element —110°C to + 60°C
Electronics — 50°C to + 50°C

0 to 15 psia
0 to 23 psia

10 m/Sec. Maximum

Figure 14.3.4-5

HUMIDITY TRANSDUCER INTERFACE DIAGRAM
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Thermal 1h d 4 |
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Subeystem Heafler Power I hour during rest of mission.
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Input Output
Interfaces Interfaces

Figure 14.3.4-6
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instrument spectrum. If this proves to be the case, a bilevel signal of 0 or 28 vdc
magnitude, indicative of oscillator frequency, will be telemetered.

14.3.4.7 Reliability and Safety Considerations - To ensure reliable operation of

the hygrometer, certain considerations have been given particular attention. The
use of a two frequency oscillator permits the instrument to experience a single
frequency failure and continue to function at a degraded performance level for the
rest of the mission. Electronics stability can be verified by adding a known impe-
dance to be periodically switched into the bridge and read out if development tests
indicate this to be desirable to maintain performance levels within design limits.
There are no special safety considerations for this instrument.

14.3.4.8 Test Requirements - Pre-flight and inflight test requirements include:

0 simple voltage .and continuity checks, and
0 an operational run with a fixed impedance supplying an electrically
simulated humidity input.

14.3.4.9 Development Requirements ~ The aluminum oxide hygrometer has been used

for a number of years. Units are available for use in laboratories and efforts
are under way to develop a sensor and electronics unit for space applications.
The primary effort required is to develop a unit sensitive enough to detect anti-

cipated Mars moisture levels.
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14.3.5 Atmospheric Wind Transducer - The wind instrumentation, contained in the

atmospheric package, senses the wind velocity and direction of the free stream at
a height of approximately five feet above the surface. Based on the VM-7 and VM-8
atmosphere models, the velocity is expected to range from 0 to 450 ft/sec at this
altitude. The data obtained from the wind measurements should allow local wind
profiles of velocity and direction to be estimated over one diurnal cycle. Local
surface roughness conditions will have a significant effect on the wind character-
istics at the sampling location.

14.3.5.1 Equipment Identification and Usage - The wind instrumentation is packaged

with the atmospheric pressure, temperature and humidity sensors in the lower por-
tion of the atmospheric package. The entire group is deployed near the end of the
low rate S-band antenna mast after landing. The basic components employed for
measuring the Mars surface wind include the following:

o Three hot-wire anemometers mounted horizontally in supporting structure
which is attached below the solid cylindrical portiom of the atmospheric
package to resolve winds with velocities below 150 ft/sec and provide
vector information. One hot-wire anemometer is mounted vertically to
sense horizontal winds from all directions,

Two dynamic pressure sensing drag plate anemometers are each suspended by
a sting cantilevered from the bottom to resolve winds with velocities in
the range of 150 to 450 ft/sec,

° Electronics package servicing all the anemometers.

A functional block diagram is shown in Figure 14.3.5-1.

In addition to the anemometers, a similar hot wire mounted in a static chamber
is used to provide an ambient temperature measurement which is needed for scaling
the hot-wire anemometer measurements. This static port is open to the atmosphere
but shielded from the wind. Because of the small additional weight and increased
reliability, a redundant set of hot-wire anemometers is included with the in-
struments. The most probable failure is a broken wire which is sensed by the
electronics and automatically switched to the second set of wires.

14,3.5.2 Design Requirements and Constraints - The major design consideration in-

volving successful operation of the wind instrumentation, is having the atmospheric
package fully deployed into the free wind stream after landing. Package deploy-
ment positioning must not interfere with other SL subsystems such as the high

gain directional antenna or spectral radiometer, Leveling of the instrument is

desirable but not necessary. An indication of the orientation of the package
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WIND INSTRUMENTATION FUNCTIONAL ARRANGEMENT

ATMOSPHERIC PACKAGE
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Figure 14.3.5-1
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with respect to local vertical and geographic coordinates will aid considerably
in the final data analysis.

All wind sensors must be positioned within the package such that perturbation
of the free wind stream by structural components is minimized. An initial calibra-
tion is required prior to deployment of the mast to establish baseline operation
parameters in a windless enviromnment. The SL Power, Computer and Sequencer, and
Data subsystems must be operable prior to deployment of the sensors,

Final wind data analysis will depend on valid atmospheric pressure, temperature
and composition measurements, because the sensitivity of both types of anemometers
is A function of the density of the atmosphere. Failure to obtain any one of these
measurements will degrade the accuracy of the wind measurements.

14.3.5.3 Physical Characteristics -

° Hot-wire anemometers - The sensor element of the hot-wire anemometers typi-

cally consists of a 0.002 inch diameter platinum wire stretched between
two thermally insulated support members. The length of the wire is 0.25
inches. The wire is encapsulated in a quartz shield approximately .02
inch diameter to protect the wire from wind blown particles and increase
structural integrity,

° Dynamic Pressure Sensors - The pressure plates of the high velocity sensors

are titanium measuring 1 inch on the sides by 0.02 inches thick.

Thin film strain gages are bonded to each side of the stings near the canti-
levered edge to measure the amount of deflection which is proportional to the
square of the wind velocity. The pressure plates are mounted vertically with
their planes perpendicular to each other.

The arrangement of the wind instrumentation is shown in Figure 14,3.5-2, The
direction sensor geometry consists of three hot-wire anemometers mounted horizon-
tally in a plane such that there is 120° separation between adjacent sensors. The
component wind velocity measured by each sensor is proportional to the sine of
the incident angle. The sensors are mounted as near the periphery of the atmos-
pheric package as possible to minimize the effects of structural interference with
the free stream.

The omnidirectional sensor is mounted in a vertical plane, in a position rela-
tively free from wind disturbance.

A redundant set of hot-wire anemometers is included with the same geometry as
the primary sensors. All the electrical wiring is contained in the structure and

routed to the electronics package above the anemometers.
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WIND INSTRUMENTATION
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Figure 14.3.5-2
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The power, size and weight characteristics of the wind instrumentation are

shown in Figure 14.3.5-3.

14.3.5-4 Operation Description

o

Hot-Wire Anemometers - The hot-wire anemometer operation is based on the

cooling of a wire which is heated to a temperature above that of the

ambient atmosphere by controlling the current through it. There are
basically three methods of operating the anemometer to obtain a signal

which is correlatable to the wind velocity. The method selected is that

of maintaining a constant voltage across the wire while the current varies
as the temperature of the wire changes. This method is the most economical
in the power required at a slight expense of accuracy over the other methods,
e.g., maintaining a constant current through the wire. The wind instrumen-
tation functional arrangement appears in Figure 14.3.5-1. Each hot-wire
anemometer and the temperature reference wire has a constant voltage supply
to furnish the heating power. The amount of current passing through the
wire is measured across a temperature compensated bridge for sampling by

the data system. The analog signal output of the bridge ranges from 0 to

40 mV. An open circuit sensor is provided to automatically switch the
electronics to the second set of anemometers in the event any of the hot-
wire circuits open up., The switching can occur only once if a failure is
detected. The data from each hot-wire anemometer is an instantaneous value
at the time it is sampled by the data system, as opposed to the peak measure-
ment of the pressure anemometer.

Pressure Anemometers -~ Winds in excess of 150 ft/sec are resolved by the

pressure anemometers. The overpressure created by the drag causes the

sting to deflect by an amount proportional to the square of the wind

velocity. The amount of deflection is measured by full bridge, thin film

=]

strain gage sensors which are bonded to each side of the sting near the
cantilevered edge. The sensitivity of the pressure anemometers is expected

to include velocities somewhat less than 100 ft/sec.

The analog signals from the hot-wire anemometers are fed directly into the

Remote Interface Unit for A/D conversion. Comparator circuits hold the largest

signals from the pressure anemometers sensed between sampling. This maximum signal

is presented to the Remote Interface Unit for A/D conversion.

Programmed operation of the wind instrumentation is accomplished by switching

the power to and from the instruments. A 30 second warm-up time is required be-
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WIND INSTRUMENTATION TABLE OF PHYSICAL CHARACTERISTICS

ITEM SIZE WEIGHT Power Volume Energy Data
(in.) (1b) (watt) (ind) | (watthr) | (Total bits)
Hot Wire Anemometers | 0.25 x 0.02 dia 0.3 2.0 1.0 31,680
and Temperature Monitor
Pressure Anemometers 1x1x0.02 0.2 0.3 8.1 5;]84
Electronics 1 x 6 dia 1.0 2.0 28 11.0
Support Structure 1 x 6 dia 0.5 28
Total 2.0 4.3 56 30.1 3,6864
Figure 14.3.5-3
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fore data sampling. Figure 14.3.5-4 represents a typical mission sequence which
provides adequate measurements during expected times of rapidly changing wind
characteristics, optimizing the power and data loads.

14.3.5.5 Performance Objectives - The design range of wind velocity at a height of

three meters above a smooth surface is from O to 450 ft/sec. The wind instrumenta-
tion is expected to measure winds within this range; however, winds less than 100
ft/sec are considered more probable.

For winds up to 150 ft/sec the velocity accuracy is +15% and direction resolu-
tion +5° falling into the measurement range of the hot-wire anemometers.

The operation of the pressure anemometers is expected to include wind velocities
involving Reynolds Numbers in excess of 100. For the preferred geometry this would
correspond to velocities as low as 40 ft/sec in the lowest density atmosphere. The
threshold sensitivity will be limited by the threshold of the strain gage system.

14.3.5.6 Interface Definition - Interfaces of the wind instrumentation with the SL

are shown in Figure 14.3.5-5. The supporting SL subsystems are:
O Power - Regulated 5 + 0.05 vde
© Computer and Sequencer - Programmed on-off commands for power switching
O Science - 0 - 40 mv signals to the Remote Interface Unit

14.3.5.7 Reliability and Safety Considerations - Reliability considerations require

proper mounting and adequate deployment techniques to insure that the instruments
are capable of withstanding maximum shock and acceleration environments. Thermal
control should pose no limitations. The overall reliability is expected to exceed
.9.

The hot-wires must not be turned on during the sterilization process in in-
flammable gas environments.

14.3.5.8 Test Requirements - Low pressure wind tunnel runs will be made to cali-

brate all the wind sensors prior to installation and sterilization. A test comtrol
unit will be required to furnish the equivalent SL power, control and data readout
interfacing.

Static atmosphere check runs will be made post sterilization and installation
for functional testing and static point calibration. Vibration and shock testing
will be required during the early development to establish a mount design which

minimizes the probability of wire breakage.
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WIND INSTRUMENTATION INTERFACES
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14.3.,5.9 Development Requirements - Attention is currently being directed to the

development of wind instrumentation capable of withstanding shock, dust and blow-

ing sand environments. This will involve developing satisfactory mounts and

shields for the hot-wire anemometer,
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14.3.6 Spectro Radiometer

14.3.6.1 Equipment Identification and Usage - The spectro radiometer consists of

two parts, as shown in the schematic block diagram in Figure 14.3.6-1. Part 1 is
a simple wide field radiometer capable of measuring the total radiant flux inci-
dent from the sky. This data is used to evaluate isolation at the surface of Mars.
Part 2 performs directional spectral measurements. It breaks the spectral region
from the ultraviolet through the infrared into 34 spectral bands. A 30° field of
view and elevation gimbal provides directional capability. Part 2 is pointed at
the overhead sky (to establish a correlation with Part 1) as well as far/near sur-
face regions and the horizon (to evaluate radiation exchange).

Part 1, Spectro Radiometer (remote) - Part 1 is installed on a self erecting

pivot which allows its optical axis to point at the local zenith. The unit is
turned on by a command from the Science Data Subsystem (SDS). Radiation incident
from the sky falls on a 20 element thermopile detector which generates an analog
d.c. signal. This signal is amplified, and then fed to a SDS digitizer. Signal
levels are temperature dependent, thus detector temperature is monitored. Reading
times are short and occur every 15 minutes throughout the duration of the mission.

Part 2, Spectro Radiometer - Part 2 operates on a programmed sequence which

samples the radiation arriving from 4 different directions. This energy falls on

a thermopile detector (identical to Part 1) after passing through a spectral filter
which limits its wavelength bandpass. The resulting electrical signal is fed to a
comparator where it is subtracted from the output of an identical reference channel.
This reference channel has a complementary set of components and operates in syn-
chronization with the detection channel. The only difference between the two is

that the reference channel views an internal black body and nothing outside. Following
the comparison process the
ac carrier and sent on to the SDS for digitizing. Calibration is established by
measuring the temperature of the reference black body. This sampling is repeated
for each of 34 spectral bands using a filter wheel. A clear (total energy) slot
is available to relate these outputs with those of Part I. A blank slot serves as

position reference.

Completion of spectral sampling at one direction leads to a command directing
Part 2 to a new pointing location. This is accomplished by a stepper motor scan
drive. An electro-mechanical indicator provides an analog position signal. Seven

of these 4 directional settings are performed in a 27 hour period.
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FUNCTIONAL SCHEMATIC BLOCK DIAGRAM
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14.3.6.2 Design Requirements and Constraints - Practical considerations dictate a

two part system in lieu of a single unit. The small Part 1 is placed on the low
rate S-Band antenna mast where its location ensures a clear 120° view of sky re-
gardless of the SL orientation. Part 2 is situated on the main SL deck where it
requires minimum support. Unobstructed elevation viewing is obtainable over the
major portion of its 180° pointing range.

Thermopile detectors generate a signal whose magnitude is dependent upon
thermal heating. This energy input can come both from the scene radiation and the
emission from the surrounding background. Only the former radiation is of in-
terest, the latter must be calibrated out. 1In Part 1 this is accomplished by
evaluating thermopile sensitivity over the expected operating temperature range.
A thermometer supplies the information necessary to correlate operatiomal condi-
tions with the calibration. Part 2 uses an electro-optical bridge configuration,
to secure independence from background temperature effects. Although both of
these approaches free the sensing process from tight thermal control, some small
non-linearities and changes in sensitivity do exist. For this reason the external
surfaces of the detector packages are coated with thermally reflective gold to
minimize transients and insure a more stable internal environment.

The optical field must be free from extraneous warm objects during measure-
ments. These objects, whether they are opaque like an antenna or minute like an
4erosol, will disLort cie weasurements. As these sensors evaluate only energy,
there is little concern for small movements during sampling. Electrical regula-
tion and shielding from intense RF energy is not a particular problem due to the
simplicity of the circuits. Data rates are low and cycle rates are also low.
14.3.6.3 Physical Characteristics - The location of this instrument on the SL is
shown in Figure 14.3.6-2. Part 1 is positioned on a mast with the antenna.

Part 2 is located on the top and at one corner of the main SL structure.

The physical features of the spectro radiometer are also shown in Figure
14.3.6-2. The 0.5 pound Part 1 is housed in a 1.5 inch diameter by 3 inch long
cylindrical shell. The detector/amplifier package and its erection gimbal fit in
this shell. Including the structural attachments, this assembly approximates 15
cubic inches in volume. The sensing/processing section of Part 2 is housed in a
cigar shaped package 6 inches long and 4 inches in maximum diameter. Positioning
is accomplished through a stepper motor/gimbal assembly located in the pivot

structure. The pivot axis is approximately 6 inches above the SL surface. Both
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TYPICAL SPECTRO RADIOMETER LAYOUT
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TABLE
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—Part 1 0.5 pounds
—Part 2 4.5 pounds
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~Part 1 0.1 watts
—Part 2 1.9 watts
Volume
—Part 1 3 cubic inches
—Part 2 60 cubic inches

Figure 14.3.6-2
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Parts 1 and 2 receive their radiant energy through thin KRS-6 protective windows.
The weight, volume, and power requirements of these units are summarized in the
Characteristics Table included with Figure 14.3.6-2.

14.3.6.4 Operational Description - Part 1 is freed following mast erection and

immediately starts a sampling sequence consisting of one 15 second measurement
every 15 minutes. Recording occurs once a second for the last 5 seconds of each
run, the first 5 seconds being devoted to warmup; the second includes a calibration
period. This sequence continues day and night for 27 hours completely spanning
one Martian diurnal cycle. Spectral sampling with Part 2 is less frequent occur-
ring only 28 times during the same period. However, the measurement interval is
longer (72 seconds, 2 samples/second) and directional pointing is provided after
each reading interval. Four regions are covered in one grouping and include areas
of the sky, ground, and horizon. Each grouping takes place seven times. Pro-
gramming is such that Parts 1 and 2 do not operate at the same time, thus mini-
mizing power and handling requirements. Correlation between the units is possible
when Part 2 views the overhead sky as the energy levels are directly related to

the solid angle of the optical cones.

14.3.6.5 Performance Objectives - The solar isolation measurements conducted by
Part 1 are spectrally limited only by source energy conditions and the transmit-
tance of KRS-6. They extend from 0.2 to 30 microns. The spectral readings in
Part 2 break this waveliengtn region incu 54 pairis. Iive tandz, having wavelansth
intervals of 0.1 - 0.2 microns, appear below 1.0 micron. Twenty-nine bands, each
1.0 micron wide, occur between 1.0 and 30 microns. A representative listing of
signal to noise ratios (emissive source) for the preferred thermopile spectro

radiometer appears below:

Blackbody Peak Peak Spectral Signal to Noise Ratio
Temperature Emmittance Wavelength 3 micromns 10 microns 30 microns
(-25°) 250°k 10-3w/cm2 12 microns 40 100,000 20,000
(CO,) 200°k  4x10 *w/em® 14 microns 1 30,000 15,000
Conditions: Bandwidth: 1 hertz

NEP: 7.6 x 10—10 watts

Detector Area: 0.06 cm2

Wavelength Interval: 1 micron
Integration Time. 1 second
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Reflected solar inputs during the daytime will lead to comparable ratios at the
visible and ultraviolet wavelengths. These are adequate to accomplish the experi-
mental objectives.

14.3.6.6 Interface Definition - Interface requirements appear in Figure 14.3.6-3.

Reference to this figure shows the spectro radiometer to require little support
except in commanded operation and data handling.

14.3.6.7 Reliability and Safety - The spectro radiometer is a very simple system

designed with current technology and proven techniques. There are no moving com-
ponents in the detection channels of either Part 1 or 2 with the exception of the
filter wheels in the latter. These are driven by direct gearing and environmen-
tally proven motors. If the motor fails completely, partial experimental success
is assured since the wheels always stop on an open view. Single color evaluations
can thus be continued.

The window material, KRS-6, is adequate for this application. Surface erosion
could occur under extreme wind-driven aerosol conditions. Energy measurement is
the prime objective, however, and this degradation changes only the solid angle
dependence resulting in a gradual loss of precision. The material's melting tem-
perature is 424°C, well above the 135°C experienced in steriliztion. '

The erection and pointing mechanism employs simple sealed gears and bearings.
Component failure limits only the pointing feature, not the detection capability.

Lo avoid surtace contamination oI tile uptical wiuduws durding stovilizaticn,
both spectro radiometer parts require removable covers. These can be designed as
part of the stowage/erection mechanisms, coming off when the units are freed and

readied for operation.

on cf the detectors, electrical checkout of the detection/
command circuits, and mechanical verification of the ability to erect/scan. A
thorough assessment of all parameters will be conducted prior to CBS steriliaztion.
Radiometric tests use a calibrated blackbody thermal standard and correlate detec-
tor detectivity with source temperature as a function of detector temperature.
Electrical evaluations center mainly on the measurement of bias levels, synchro-
nization pulses, and signal levels in the amplifiers and contrel circuits.
Mechanical determinations insure proper sequencing and positioning of the moving

parts.
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Once the instrumentation has been sterilized, only electrical tests need be
performed. These verify operations and are accomplished as part of the pre-launch
functional checkout on the Orbiter prior to descent (when extensive handling pro-
visions are available).

14.3.6.9 Development Requirements - The technology for the spectro radiometer

package is available and none of the items require extensive development. The
main emphasis will be directed to keeping the equipment small, simple, integrating

it with the SL, and insuring its reliability.
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14.3.7 Alpha Spectrometer

14.3.7.1 Equipment Identification and Usage - The Alpha Spectrometer provides an

elemental analysis of the surface material. It identifies the elements and their
relative abundance in the surface. A schematic representation is shown in Figure
14.3.7-1. The collimated beam of monoenergetic alpha particles, from a radioiso-
tope such as Curium -242, is directed upon the sample to be analyzed. Alpha par-
ticles which undergo a large angle backscattering have a maximum energy which is
dependent upon the atomic number of the nucleus by which they were scattered. The
energy spectrum from a mixed sample is made up of a series of plateaus of the type
shown in Figure 14.3.7-2. The position of the drop identifies the element and the
magnitude provides the abundance.

A backscattered alpha particle is detected by means of a solid state radiation
detector, the output of which is proportional to the energy of the alpha particle.
This output pulse is amplified and fed into a multichannel pulse height analyzer
which records the number of particles in each pulse height (energy) range. The
number versus energy data is the information telemetered. Many nuclei, when bom-
barded by alphaparticles, will undergo alpha-proton (e,P) nuclear reactions. The
energy of the resulting proton is characteristic of the target nucleus. The protons
are detected and analyzed in the same manner as the alpha particles. The proton
detectors are covered with a thin gold window which stops the backscattered alpha
particles. To eliminate recording of cosmic ray protons, each proton detector is
backed by an additional solid state detector. Any pulse from this cosmic ray aetec-—
tor will reject a coincident pulse from the proton detector. The alpha spectrom-
eter consists of two packages, the sensor head and the electronics unit.

Sensor Head - The sensor head contains the six collimated Curium -242 (Cm242)
alpha sources, two alpha detectors, four proton detectors, four proton guard de-
tectors and the head electronics. The detectors are all solid state radiation
detectors and are arranged such that in the event of a failure, the malfunctioning
detector can be disconnected. The Sensor head electronics contains all the elec-
tronics necessary to power the detectors, amplify the signal, reject the background
radiation, discriminate against pulses out of the desired pulse height range, mix
the detector signals, and convert the signals from pulse height to a time signal.

Electronics Unit - The electronics unit contains two 256 channel pulse height

analyzers, 256 ten bit alpha counters (top 8 are read out), 256 8 bit proton
counters, three buffer registers for temporary data storage and the readout system

to feed data to the transmission system.
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ALPHA SPECTROMETER SCHEMATIC REPRESENTATION
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14.3.7.2 Design Requirements and Constraints - A suitable location must be provid-

ed which will allow for the analysis of prepared samples. Sufficient insulation is

required to obtain temperatures within tolerance ranges (non-operating: -50°C to

+ 75°C, operating: -30°C to + 50°C). The landing must be accomplished with suffi-

ciently low contamination of the surface. If radiation levels exceed 50 mr/hr of
>0.15 MeV, gamma radiation (e.g. from radioisotope heaters) shielding must be

added to reduce it to this level.

14.3.7.3 Physical Characteristics - The physical characteristics are summarized in

Figure 14.3.7-3 . The arrangement of the sources, detectors and electronics in

the sensor head is shown in Figure 14.3.7-4.

14.3.7.4 Operational Description - The mission sequence is shown in Figure
14.3.7-5. After touchdown the alpha spectrometer is turned on for a fifteen minute
warm-up period. A two hour background count is then taken with a beryllium sample
in place, which will give no backscattering. The background data is then read out,
the first prepared sample is received from the sample processor and an eight hour
analysis is performed. After the eight hours, the data is read out and the sample
changed. The process is repeated for the second and third prepared samples. After
the data for the third sample is read out, the instrument is turned off.

14.3.7.5 Performance Objective - The alpha spectrometer will provide information

concerning the composition of the Mars surface material. The expected resolution
is three atomic percent for the elements from boron to calcium, + 1 atomic number
from titanium to zinc and + 3 atomic numbers from zinc to silver. The elements
above silver are considered in groups of ten.

14.3.7.6 Interface Definition — An interface block diagram appears in Figure

14.3.7-6. The data output is of two main types: (1) the engineering data from
sensors monitoring the operation of the instrument, and (2) the sample data which
gives the energy spectra of the alpha particles and protons. The engineering data
consists of two head temperatures and two voltages (7 bits each) which are read
once each 15 minutes, six detector data rates (7 bits each) and six detector states
(1 bit each) which are read once each ten minutes of operation. The sample data

consists of 512 8 bit words per sample. TFor the alpha spectrum, these 8 bits are
for the total count, 23—210

The sensor head must be mounted so that the sample collecting and processing
system can provide the prepared samples for analysis. The standard sample which is

carried onboard must be capable of being repeatedly used.

14.3-60
REPORT F694 ¢« VOLUME III o PART C o 31 AUGUST 1967
MCDONNELL ASTRONAUTICS




TABLE OF PHYSICAL CHARACTERISTICS

Volume
Weight
Power
Energy

Accuracy

600 in3
10.0 Ib
2 Watts
54 Watt hr

3 Atomic Percent Boron (5)* to Calcium (20)
+1 Atomic Number Titanium (22) to Zinc (30)
+3 Atomic Numbers Gallium (31) to Silver (47)

*Atomic Numbers
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14.3.7.7 Reliability and Safety Considerations - All the detector systems are re-

dundant and means are provided for detecting malfunctions and eliminating the mal-
functioning detector system from use. The operation of the electronics unit is
critical to the success of this experiment. Only a failure of both multichannel
analyzer systems will result in complete failure to obtain the surface composition.
A failure in the proton multichannel analyzer will degrade the results and a
failure in the alpha analyzer will seriously degrade the results of the experiment.

When handling radioisotopes there is always a safety problem. Care must be
taken in preparation and handling of the sources. The fact that the sz42 sources
are easily shielded and have a relatively short half-life (163 days) greatly
reduces the dangers.

14.3.7.8 Test Requirements - After the instrument is mounted in the canister and

ready for launch, the engineering data will be read and a functional test will be
made with a standard sample.

Engineering data and functional test with the standard sample will be perform~
ed as in the pre-flight test and in-flight monitoring.

14.3.7.9 Development Requirements - The development of the 512 Counters will re-

quire considerable development effort. The remainder of the instrument is within
present state-of-the-art capabilities. Further developments in source preparation
techniques, detector design and electronics miniaturization are expected to improve

accuracy and reduce size, weight and power requirements.
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14.3.8 GAS CHROMATOGRAPH

14,3.8.1 Equipment Identification and Usage - The gas chromatograph, Figure

14.3.8-1, will be used for the chemical analysis of the atmosphere, the subsurface
atmosphere (samples provided through vent tubes in the subsurface probe), and sur-
face material volatiles. The major components of the chromatograph are:

a. Pyrolysis oven (two temperatures levels: 150°C and 700°C)

b. Carrier gas supply (100 millimeters3 helium at 5000 psi)

c. Column oven #1 (10°C + 1°C)

d. Column #2 (50°C to 300°C range, 10°C/min rate;

300°C + 1°C for 15 min.)
e. Carrier gas flow control (10 + 0.1 cubic3/min.)
f. Sample inlet (includes a gas sample compression piston, 48/1 ratio and
a gas sample inlet valve).
g. Six micro thermal conductivity detectors.
h., Four separation columns
#1 porapak Q at 10 + 1°C, 6' x 0,03"
#2 5 A molecular sieve 10 + 1°C
#3 silicone SE - 54
temperature 50 to 300°C at 10°C/min., 15 min. at 300°C + 1°C
#4 carbowax 20 M terephthalic acid reacted column, temperature programmed
from 50 to 300°C at 10°C/min., 15 min., at 300°C + 1°C
The gas chromatograph (GC) is a relatively simple, rugged instrument which is
unexcelled for quantitative analysis of organic compounds.

The gas chromatograph can be used as a '"life detection" system if a suspect
material is introduced to the GC properly. If we assume a chemistry similar to
that found on Earth (i.e. based on carbon, nitrogen, etc.), the positive identi-
fication of certain chemical compounds are good indications of life.

14.3.8.2 Design Requirements and Constraints - A requirement which resulted in

the selection of the preferred pyrolysis four-column gas chromatograph is that the
instrument be capable of analyzing atmospheric samples, and subsurface material
volatiles obtained by heating surface samples., It is necessary to be able to
detect the presence of both organic and inorganic compounds with the gas chroma-
tograph including the measurement of the water vapor in the atmosphere. The
atmospheric sample inlet should be located to minimize contamination caused by

vehicle outgassing. The microthermal conductivity detectors were chosen in the
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preferred design in order to minimize the number or carrier gases required for
analysis. Although a flame ionization detector is more sensitive than the
thermal conductivity detector, it requires both hydrogen and oxygen. If an argon
ionization detector was used, we would need different carrier gases for the
atmosphere and soil analysis systems since we could not measure atmospheric argon
with an argon carrier gas. However, the argon/oxygen analysis may place severe
power limitations on the GC-1 column oven since it is necessary to perform this
particular analysis at 10°C, while the spacecraft ambient temperature varies from
40°F to 120°F,.

14,3.8.3 Physical Characteristics - The physical characteristics of the preferred

gas chromatograph are:

a. Weight: 15 1bs

b. Power: 15 watts ave, 40 watts max for four five minute runs

c. Size: " x 7" x 8"

d. Data:  303.3 X 10> bits
The physical arrangement of the entire gas chromatograph system is shown in Figure
14.3.8-2,

14.3,8.4 Operation Description - In the gas chromatograph, volatile materials are

injected into a moving carrier gas stream and separated according to preferrential
interaction with a liquid and solid contained in a heated column. In a mixture of
several components, each component will pass through the column at a different
rate and will be observed in the output of the thermal conductivity detector at
the end of the column at different times. To analyze solid surface materials, the
sample is heated to drive off volatiles which are then analyzed in gas form by the
gas chromatograph.

The following is a detail description of how the chromatograph is used to
analyse 1) atmosphere, 2) subsurface gas, and 3) soil volatile samples. 1In the
chromatograph an inert stream of gas, the carrier gas, contains the unknown in the
vapor phase. The gases flow through a column containing an appropriate interaction
phase on a solid support and by a process of selective interaction the various
components of the unknown are spread out along the column. Eventually they are
swept out of the column at different times. The time of elution multiplied by the
gas flow rate is characteristic of particular species, and is called the "retention

volume", V Many different types of columns exist but they can usually be

R
divided into two classes (1) gas solid and (2) gas liquid columns. In the former,

the unknown interacts with the column material by a process of selective
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gbsorption and‘description. In gas-liquid chromatography, the separation is
performed by preferential solubility of each component down the length of the
column. The pressure of the unknown in the vapor above the liquid phase is pro-
portional to the amount dissolved in the liquid (Raoult's Law) and moving gas
"pushes" the material through the column at different rates, thereby effecting
separation. Columns can also be subdivided according to the method by which the
liquid or solid phase is dispersed: in capillary columns the organic coats a
solid which is "packed" into the column; and coated open tubular columns which
combine the advantages found in both packed and capillary columns.

It is necessary to use different column materials for different classes of
chemical compounds. That is, a column such as a molecular sieve is an excellant

column for separating the so called permanent gases (02, N2, H2, C02, CH4) but is

useless for separating other hydrocarbons. Similarly a good column for hyrocarbons
is useless for separating amines. For complete analysis a system utilizing

several columns is necessary.

It is important to remember that gas chromatography is ONLY a means for separation.
Identification of each and every component is a separate and necessafy job. This
can be accomplished by:

a. Separation of each material at the outlet and then analysis by either a
chemical or physical method.

b. Known can be injected into the system and the retention volume of the
unknown compared with that of the known. It is usually necessary to
perform this type of identification with several different columns at
several different temperatures.

The temperature of the column effects the rate at which the unknowns are eluted.
That is, low molecular weight compounds pass through the column at low tempera-
tures. They are not separated at high temperatures since they all emerge in a few
seconds and can not be resolved. Therefore; if the mixture contains both low and
high molecular weight materials it becomes desirable to steadily increase the column
column temperature during analysis. This is called "temperature programming" and

is an extremely powerful separation procedure.

In addition to the separation columns the basic components of a gas chromato-
graph are: the sample inlet system, the carrier gas and associated pressure and
flow regulators, the detector (one or more), and the data readout system. The
mission operation sequence for the three analyses discussed in the following para-

graphs appears in Figure 14.3.8-3,
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o  Atmospheric Analysis - It is desirable to analyze the Martian atmosphere

for the following gases: carbon dioxide, carbon monoxide, argon, nitrogen, oxygen,
methane, and water vapor. The detection of these gases can best be accomplished
with a microthermal conductivity detector. The minimum detectable mass in this
type of detector is approximately 0.01 gram. Therefore, we must introduce a
volume of gas sufficiently large to contain at least 0.01 gram of each material
in question. If we use a 12 ml sample of the atmosphere at the partial pressures
listed, the following mass of each component would be present:

Mass of Each Component in a Selected Martian Atmosphere

partial pressure component mass
Carbon Dioxide 4 torr 106 grams
Argon 0.1 2.4
Nitrogen 0.1 1.7
Oxygen .01 .19
Carbon Monoxide .01 .19
Methane .001 .01
Water .001 .01

However, it is not practical to introduce the gas from a 12 ml inlet volume. The
gas must be compressed to a volume no greater than 0.25 ml. This requires a com-
pression factor of 48 in the inlet valve prior to admittance in the gas chromato-
graph. This is a simple operation but it is necessary that the valve be con-
structed so that the dead volume in the inlet system be less than 25 microliters.
The separation of the seven components requires a system containing three
thermal conductivity detectors, an inlet valve, a porapak column controlled at
10 + 1°C, a gas delay line and a second column of 5 molecular sieve cooled to
10° + 1°C. A block diagram of this system appears in Figure 14.3.8-4. The three
detectors are necessary to provide a reference (detector 1) and a detector for the
outlet of each column. The first column is 6 feet by 0.030 inch internal/diameter
packed with porapak "Q" which groups the argon, oxygen, and nitrogen into one peak
and separates the methane, carbon monoxide, carbon dioxide and water in the order
listed. The composite Ar—N2—02 enters a delay line (approximately 4 feet of
capillary tubing) while the CHA’ CO and CO2 are recorded in the second detector.
The Ar, 02, and N2 are resolved with the molecular sieve column while the Hzo is
still passing through the porapack column. Then the HZO emerges and is recorded.
A total of 8 peaks are recorded, They are, in order, the composite Ar—Oz-NZ, CH4,

002 (all recorded in detector 2), then NZ’ O2 and Ar in detector 3, and finally
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H20 in detector 2. The entire analysis requires approximately 10 minutes with a
helium flow rate of 10 ml/min. The chromatograms from each detector are shown in
Figure 14.3.8-4. To insure proper operation, a 0.25 cc calibration mixture con-
taining Ar, 02, NZ’ co, C02, CHA’ and HZQ will be run following the actual
Martian gas and soil volatile analysis. An initial calibration will be carried
out and the calibration sample collected at the vent to avoid atmospheric contam-

ination.

Subsurface Gas Analysis - The analysis of the subsurface gases is essentially

identical to that of the atmospheric gases. However, the gases must be collected

with a deployable probe and then admitted to the gas chromatograph.
© Subsurface Sample Analysis ~ It is essential that the Martian soil be

treated prior to admittance into the gas chromatograph. The simplest most re-
producible technique comsists of pyrolyzing the sample in a high temperature oven
at a controlled rate. The product gases will be passed through three different
chromatographic columns (molecular sieve, polar, and non-polar) connected in
parallel into microthermal conductivity detectors. The gas output from the
detector is passed through a flow controller. Thus, the entire system consists
of a sample introduction device, a pyrolysis oven, a well regulated carrier gas,
and a gas chromatograph. Refer to Figure 14.3.8-1., The entire operation is as
follows:

a. Sample System: An 0.2 cm3 finely ground sample (particle size 100 - 150
micron) is introduced into the pyrolysis oven. The system provides for the in-
troduction of a second sample volume, 0.2 cm3 in case the initial sample pro-
duces copious amounts of volatiles which saturate the chromatograph system.

b. Pyrolysis Oven: The sample in the heating oven is first flushed with the
carrier gas, then heated to 150°C for 5 minutes to remove any low molecular weight
organic compounds. This gaseous material is then admitted to the chromatograph
for analysis. The oven is rapidly heated to 700°C and held at this temperature
for five minutes after which time the gaseous portion is admitted to the GC for
analysis. The maximum power required for this operation is 40 watts. The 150°C
heating will require about 10 watts for five minutes and the entire 40 watts will
also be needed for five minutes.

¢. Gas Chromatograph: The chromatograph system contains the high pressure
He cylinder, automatic valves and switching arrangement, three columns, 6 detectors,
temperature programmed oven, and flow controllers. The high pressure cylinder

contains 10 liters of helium at a pressure of 7000 psi and weighs 0.7 pounds. The
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pressure valves must control the pressure across the GC column to 40 + 1 psi and
regulate the flow to 10 + 1 ml/min. The automatic inlet valves are programmed to
open and close at the appropriate time and the vapor above the heated soil is
forced into the GC where it is split into 3 separate fractioms.

In GC-1 the product gases are analyzed for N2, 02, co, CO2 and HZO pro-
duced during heating. The column in GC-2 is non-polar, such as SE-54 silicon,
while a polar column, carbonwax 20M terephthalic acid, is used in GC-3. The
columns in GC-2 and GC-3 are temperature programmed from 50° to 300°C (at a rate
of 10°C per minute) and controlled isothermally at 300°C for an additional 15
minutes. The temperature must be controlled to within one-half degree. The
effluents from the columns are monitored separately by individual micro thermal
conductivity detectors. The analysis occurs simultaneously in all theee columns.
In each case the detection system consits of a part of detectors forming two arms
of a Wheatstone bridge. The current through each element is 15 milliamps at 12
volts. Reference detectors are required, however a single detector serves as the
reference for GC-2 and GC-3 and another is needed for GC-1.

All detectors are contained inside the oven containing the column. The
output consists of current peaks (up to 25) whose amplitude is several nanoamps
and whose time width is 10 - 60 seconds. The quantities of interest are the
time it takes for the peak to reach its maximum height (emergent time) and the
total area of the peak. These two quantities should be determine to an accuracy
of 2%. 1If the detector current becomes greater than 1 milliamp, the smaller
(0.025 g) pyrolysis system must be used.

The analysis time, power consumption and data requirements for the atmos-
phere, sub-soil gas, and 4 soil analyses are shown in Figure 14.3.8-5. The times
shown in this figure correspond to the science sequence for a morning landing and
are related to the time of touchdown.

14.3.8.5 Performance Characteristics - The selected gas chromatograph will have

the following performance characteristics:
Accuracy: 2% for major components
Range: Detects compounds with molecular
weight through 300.
Sensitivity: Organic materials in the soil,
10 parts/million
Inorganic gases 0.001 torr.

Pyrolysis Temperatures: 150°C and 700°C
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Time From Touchdown (Hours)

GAS CLOMATOGRAPHY EXPERIMENT

SEQUENCE REQUIREMENTS

~

20

5]

22

23

24

25

26

27

Mission:
(1) 8 Atmospheric Analyses .
(2) 8 Subsoil Gas Analyses Total Operation | Totql Energy = 236 watt-hrs Data 303.3 x 103 Bits
! Time = 15.2 hrs.
(3) 4 Subsoil Analyses
Event Sequence Time for Power for Dota Bits
Each Event Each Event
Helium & Column Temperature ON 30 minutes
3
Std. Calibration Sample CG Columns 1,2, 3,4 4 50 minutes 19.2 x 10
15 watts
Almosphere & Subsoil Gases 30 minutes 12.8 x 103
Soil Volatile Analysis 110 minutes 40 watts 5 minutes 38.4 x 10°
- 15 watts
| Soil Volatile Analysis 110 minutes 40 wotts 5 minutes 38.4 x 103
15 watts
Standby 30 minutes
Atmospherie & Subsoil Gases 30 minutes 12.8 x 103
Atmospherie & Subsoil Gases 30 minutes 5 wotts 12.8 x 103
Atmospherie & Subsoil Gases 30 minutes 12.8 x 103
Standby 30 minutes f
iwnﬂs
F Soil, Volatile Analysis 110 minutes 40 watts 5 minutes 38.4 x 103
15 watts
Atmospherie & Subsoil Gases 30 minutes 12.8 x 103
Standby 30 minutes
15 watts
B 4
Soil Volatile Analysis 110 minutes 40 watts 5 minutes 38.4 x 103
Atmospherie & Subsoil Gases 30 minutes 12.8 x 10
[~ Atmospherie & Subsoil Gases 30 minutes 15 watts 12.8 x 103
Atmospherie & Subsoil Gases 30 minutes 12.8 x 103
["Std. Calibration Somple CG Columns 1,2,3,& 4 50 minutes 19.2 x 103
B 294.4
Monitoring Data 7 bits/hr x 15.2 hrs. 8.9 x 103 bits

29

—————

Total Data 303.3 x 103 bits
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Oven temperature accuracy: + 1°C

Expected number of detected components:
atmosphere: 1 to 10
soil: 1 to 25

14.3.8.6 Interface Definition - The gas chromatograph is not a deployable instru-

ment and the samples must be supplied to the instrument. This requires an active

interface with the atmosphere, a subsurface probe, and with the soil gathering

mechanism.
Soil sample size provided by the sample processor 1 cm3/batch
4 cm3/ total
Power consumption: 15 watts ave
40 watts max for
five minute runs
Energy: 236 watt hrs
Thermal environment during operation after landing 40° to 120°F

Total Data Output: 303 x 103 bits

four

A block diagram illustrating the interfacing of the gas chromatograph with the

Science Payload is shown in Figure 14.3.8-6 and the electronic interface summary

appears in Figure 14.3.8-7.

The data for the soil analysis is the sum of two (one run for al1l50°c

pyrolysis temperature plus a second run for a 700°C pyrolysis temperature) 3200

bit analysis for the soil volatiles using the same two columns as used for the

atmospheric analysis. 1In addition, 25,600 bits are utilized for the analysis

of

the soil volatiles using the third and fourth columns. The 25,600 bits result

from an analysis time of 40 minutes, a sample rate of one per 6 seconds, the use

of two detectors, two amplifiers (low range and high range), and two pyrolysis

temperatures: (2 amplifiers) x (40 x 60 seconds) x (1/6 sample/second) x (8 bits/

sample) x (2 detectors) x (2 temperatures) = 25,600 bits. The total data per
analysis is thus 25,600 plus two times 6400 which equals 38,400 bits and the

soil

analysis time is 100 minutes (50 minutes for analyzing the 150°C pyrolysis pro-

ducts and 50 minutes for analyzing the 700°C pyrolysis products). An additional

10 minutes is required for cooling the columns and flushing, which results in the

total time of 110 minutes for the soil analysis listed in Figure 14.3.8-3, and

Figure 14.3.8-3,

The data for the atmospheric and subsoil gas analysis is equal to the data

rate, (one sample per three seconds) times the number of bits per sample (8),
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GAS CHROMATOGRAPH
INTERFACE BLOCK DIAGRAM
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. [ ]
I I
i I
I I
! I
p Off-On | I
ower

| v I
| |
| |
: i
Commands l > I
| Gas Chromatograph |
i Operation Modes 0-5v
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ol Cl;as E Helium On-Off Vent fl:ilter
Subsoil Gas T — I
| I
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-

. Operating Modes

ELECTRONIC INTERFACE - SUMMARY

EXPERIMENT: GAS ANALYSIS
(GAS CHROMATOGRAPH)

MODE

MODE CHARACTERISTICS

SCIENCE PARAMETER
SAMPLE RATE

Atmos — Subsurface
Gas Analysis

Soil Volatiles

® Eight ~ 20 minute analyses, three each ot sunrise and
sunset, one at noon and one at midnight. Subsurface
10 minute Cols 1 and 2 paralle! operation then otmos
10 minute Cols 1 and 2 parallel operation

® 4 — 10 minute analyses phased with soil sampler operation.

One/3 seconds

One/6 secs(Cols 3 & 4)

Analysis Temp 1 = 10 minCols 1 and 2 in parallel then 40 min Cols One/3 secs(Cols 1& 2)
3 and 4 in parallel, then cool 10 min. Repeat for Temp 2.

Calibration ® Two operations (Before and after use) 50 minutes each - "
Cols 1and 2 in parallel (10 min) ond Cols 3 & 4 in por-
allel (40 min).

2. Science Data Choracteristics
PARAMETER FORM ACCURACY REMARKS

Co!l 1Hi Sens 0-5v 8 Bit Used for Atmos &

Col 1Lo Sens 0-5v 8 Bit Subsurface Gas —

Col 2 Hi Sens 0-5V 8 Bit 6400 Bits per 10 Min ) A

Col 2 Lo Sens 0-5v 8 Bit Analysis Used for Soi! Analysis

Col 3 Hi Sens 0-5V 8 Bit 38,400 Bits per 110 Min Analysis

Col 3 Lo Sens 0-5v 8 Bit (Two Temps).

Col 4Hi Sens 0-5v 8 Bit

Col 4 Lo Sens 0-5v 8 Bit

Col 1 Temp 0-40 MV 8 Bit One Sample/Two Minutes

Col 2 Temp 0-40 MV 8 Bit One Sample/Two Minutes

Col 3 Temp 0-40 MV 8 Bit One Sample/ 10 Minutes During Use Only

Col 4 Temp 0-40 MV 8 Bit One Sample/10 Minutes

Oven Temp 0-40 MV 8 Bit One Sample/50 Minutes

3. Engineering Data Characteristics
PARAMETER | FORM ACCURACY SAMPLE RATE REMARKS
Carrier Gas Press| 0-40 MV 7 Bits One/Hour
Colib_Gas Press | 0-40 MV 7 Bits One/Hour

4. Command and Sequencing Summary
MAXIMUM NRT MAXIMUM PROPORTIONAL|  MODE/TIME OF
COMMAND TYPE DELAY & TOLERANCE | VALUE & TOLERANCE OCCURRENCE
Power On D-NRT-R & NR| 30n ¢+ Im Upon Sample Ready
Power Off D-NRT-R & NR Im + Im After Completion
Mode D-NRT-R &NR| 30n + Im 5 Values Signal*
*See Status Commands
5. Stotus Commands
COMMAND FUNCTION
Analysis For Sequencing.
Complete

=

Power Summary

OPERATION | AVERAGE POWER | VOLTAGE + REGULATION | PEAK POWER [ DURATION OF OPERATION
Gas Analysis 15w 28+5 vde 30w 15.2 Hours
Oven Heating 40W 28 + 5 vde 40 W 20 Min.

REPORT F694 ¢« VOLUME TII ePART C

e 31 AUGUST 1967

MCDONNELL ASTRONAUTICS

Figure 14.3.8-7
14.3-78



times the analysis time of 1200 seconds (600 seconds for the atmospheric plus 600
seconds for the subsurface gas analysis) times the number of detectors (2). The
data per analysis is thus: (2 amplifiers) x (1/3 sample/second) x (8 bits/sample)
x (600 seconds) x (2 detectors) = 6400 bits for each 10 minute analysis. Two 5
minute flushes in addition to the 20 minute analysis of gas samples in required
which results in the 30 minute operation time shown in Figure 14.3.8-3. A total
of 38,400 bits are used in a 110 minute soil analysis.

14.3.8.7 Reliability and Safety - Since there are a large number of valves and

a complex sequencing for the gas chromatograph, this unit is expected to present
a major reliability problem. The reliability of this instrument is however,
expected to be better than the 0.85 allocated to all the instruments. The major
safety consideration is the sterilization heating of the pressurized gas supplies.

14.3.8.8 Test Requirements -Calibration gas is provided for carrying out:

operational test of the gas chromatograph following sterilization. In flight
monitoring includes the pressures of the calibration sample supply and the helium
carrier gas supply.

14.3.8.9, - Development Requirements - The basic principles of chromatograph are

well known, however the specific equipment to perform the analysis must be devel-
oped. In particular, additional work is needed on the development of pyrolysis
techniques, in interpretation of programs, in data compression and handling, and

in valving, detection, and calibration sample collection.
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14.3.9 Life Detectors - Three simple culture type life detectors selected for the

baseline design are: two Gulliver type life detectors which include four in situ
probes, and a Wolf Trap life detector. Only the Wolf Trap and the in situ component
of one of the Gulliver detectors has been developed to VOYAGER requirements. None

of the many other possible instruments have been developed consistent with the
present 1973 mission constraints. Therefore, in order to develop the necessary
detector interface and design requirements for Phase B compliance, certain liberties
have been taken with the extrapolation of Gulliver concepts and with the modification
of the Wolf Trap into two 1973 surface laboratory experiment packages (two packages =~
three specific Life Detectors).

14.3.9.1 Equipment Identification and Usage - Collectively the three detectors probe

for a wide variety of earth-like microorganisms through stimulated performance as
measured directly from growing cultures. These detectors, through programmable
conditioned measurements, provide for both the functional evaluation of
life and for a preliminary estimate of its gross characteristics. Such measurements
require that specific influences (experimental treatments) be brought to bear on the
specimen which will predictably activate, accelerate, inhibit or inactivate the
specimen to produce a response if life is present. The selected treatments should
reflect the most recent data pertinent to physical, physical-chemical, chemical and
microbiological properties of Martian or other extraterrestrial like soils. To
this end, the assumed baseline design does reflect provision for the later selections
of specific experimental treatment.

Gulliver Detector #1 probes for life at the molecular level by attempting to
elicit metabolism of prepared substrates. Several variations of nutrient media
(each milieu as broadly nonselective as possible) containing labeled substrates of

1 .
C 4 and/or 835 in aqueous solution are offered one at a time to equal portions of

processed soil sample. The choice of labeled organics is predicated upon the wide-
spread importance of the Krebs cycle in aerobic metabolism and of the Embden Meyerhof
pathway in anaerobic metabolism. Viable cells, if present, assimilating one or
more of the labeled substrates are likely to evolve radioactive gases when these
substrates are oxidatively metabolized. The evolved radioactive gases, C1402 and/or
HZSBS, are collected (chemadsorptively fixed) on LiOH monolayers above each culture
chamber. Disintegrations from the collected gas(es) leading to B emmision

(above say 35 Kev) are sensed by Geiger tubes. The disintegration rate is a measure

of the net amount of gas collected and thus, is a measure of the net amount of sub-

strate metabolized or degraded. The results may be biological or non-biological
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in origin (as an example, reaction by soil organics which may or may not be associ-
ated with indigenous microorganisms). Since suitable control design allows differen-
tiating between these two causes, the data returned permits a decision of either no
detectable metabolic involvement of carbon and sulfur, detectable involvement but
without growth or detectable involvement with growth (reproduction).

Gulliver detector #2 follows the same pattern as detector #1 except that the
labeled substrates would be molecular C1402 and/or HZSBS, the nutient media then being
that of the organism's own natural environment. In addition, sample treatment in-
cludes separation of light from dark induced fixation of the labeled gas(es). Strict

phototrophs, for example, would be expected to fix clao in the light and then when

placed in the dark consume the energy compounds recentlﬁ photosynthesized, thereby
expiring 01402 for collection. As correlates between the two detectors, the base-
line design provides for: 1light/dark modulation of detector #1 chambers with gradu-
ated heating to combustion with oxygen in four (4) detector #2 chambers. The latter
allows the differentiation of biological from non-biological gas fixing processes
(both light and/or dark induced) characteristic of the sample in toto (the sum of both
biological and non-biological fixation).

The Wolf Trap, detector #3, probes for life at the level of the viable entity
rather than at the molecular level. The primary variable sensed is light scatter pro-
duced by a suspension of microorganism sized particles. A secondary variable sensed,
that of a correlate to growth processes in aqueous culture media, is the change in
hydrogen ion activity (pH) of that media. This detector in its present state of
development (under Wolf Vishniac at Rochester University) displays, for E. coli a
sensitivity in organisms/ml/mv of about 2 to 5 x lO4 (the tests cited for this
figure began with the inoculation of 2 to 5 E. coli and were terminated some 10
hours later, at which time the turbidity of the culture had reached about 1% of
full scale above noise; 4 hours had been allowed for sterile media particles to

settle prior to inoculation with the previously prepared culture).

Culture Chamber Component of Life Detectors #1 and #2 - The functional organi-

zation of the major elements comprising the integrated package (detectors #1

and #2) is shown by Figures 14.3.9-1, and 14.3.9-2. The principal detector element

is the test or culture chamber (in situ test chambers are considered separately

under the heading of in situ projectable module). A typical chamber and its supporting
elements are shown in Figure 14.3.9-3. An aliquot of soil sample is delivered from

the rotating assembly to a spring loaded delivery tube, open at its top and located

in the chamber cylinder wall. Nutrient media and antimetabolite in glass ampules
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THREE SPECIFIC LIFE DETECTORS
LIFE DETECTOR FUNCTIONAL BLOCK DIAGRAM

LIFE DETECTORS 1 AND 2 (METABOLISM PACKAGE)
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LIFE DETECTORS 1 AND 2
FUNCTIONAL SCHEMATIC DIAGRAM

Surface Laboratory Part of Metabolism Package
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TYPICAL TEST (CULTURE) CHAMBER CYLINDER
(SECTIONAL VIEW)
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Figure 14.3.9-3
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are also contained in the chamber cylinder. Delivery is by means of spring loaded
plungers, which like the sample delivery plunger is tripped, at the proper time, by
wiping its attached spoke into a milled slot in the chamber cylinder. A mechanism
located in the rotating assembly provides the mechanical motivation for these func-—

tions.

Rotating Assembly Component of Life Detectors #1 and #2 - The rotating assembly,

shown in Figures 14.3.9-4 and 14.3.9-5, houses the detector electronics, parasitic
experiment programmer, science data registers (the latter three elements are shown
in Figure 14.3.9-5) and the internal soil sample processing and delivery elements.

Stationary Canister Component of Life Detectors #1 and #2 - The stationary canister

(Figure 14.3.9-4) contains the main detector sequencer, most of the engineering
functional elements, the in situ metabolism programmer and other functional elements
supporting the deployed modules (Figure 14.3.9-6). The canister also represents

all but three of the SLS Life Detector package interfaces (those not represented

are the soil sample acquisition system/rotating assembly interface, the SL in situ
module deployment device/in situ module interface and the SL/detector package field
joint).

In Situ Projectable Module Component of Life Detector #1 - Each of the four modules

provided is deployed directly onto the planet's surface for its sample. The module's
entire operating time is spent covering the section of soil over which it came to
rest after deployment. One module is deployed in each of the four Lander quadrants.
Daylight deployment is required. A modified Hazleton Mark IV Gulliver (modified

by extending its length to three inches for the purpose of adding a soil/gas exchange
or background radiation detector as shown in Figure 14.3.9-7) serves as the assumed
baseline design for each of the four modules.

Culture Chamber Component of Life Detector #3 - Five culture cells are used in the

) R

baseline design and are shown in Figure 14.3.9-8 (shown in relation to the manifold
assembly). Each cell functions both as a thermally controlled incubation chamber

and as a nephelometer cuvette.

Electro-Optical Component of Life Detector #3 - The turbidity detector (mephelometer)

is an electro-optical device which provides an electrical signal when light passing

through the liquid in the culture cell is scattered by the small particles contained
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INTEGRATED METABOLISM PACKAGE

LIFE DETECTOR NO. 1 - GENERAL METABOLISM
LIFE DETECTOR NO. 2 - PHOTOSYNTHESIS
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in that liquid. Preferential scattering for transluscent organisms of about one
micron size, in an aqueous culture, appears within a cone of 20 degrees from the
direction of the illuminating light (see culture cell configuration in Figure 14.3.9-9).
The conical interior of the culture cell is polished for good reflectivity. The com-
plete assembly, Figure 14.3.9-8, consists of the optics housing (for coaxial align-
ment of the optics train), the culture cells and an arrangement of lamps, lenses and
photo detectors. A diagram of the optics train used for each of the five cells appears
in Figure 14.3.9-9.

The pH Component of Life Detector #3 - The purpose of the pH system is to monitor

acidity changes in the bacterial cultures, thereby providing correlative information
to turbidity data. A range of from 4 to 9 pH units with a total drift of less than
0.1 pH unit is desirable.

14.3.9-2 Design Requirements and Constraints - The major constraints that influence

the design of these detectors are: (also see Part B, Paragraph 5.9.3.6)
a. Maximum time for post landing operation of 27 hours.
b. Sample obtained from an area which has been distrubed by the retro rocket
plume.

c. No true selectability of site sampled within the working area of the soil

sampler.
d. Time that is required to acquire,process and deliver sample.
e. Landing time and site uncertainty.
f. Central programming (SDS memory) that can be updated by command control.
g- Each instrument is basic and not tied to any particular assay.
h.

Each instrument make available to the potential experimentalist multiple

methods of experimental observation.

i. An instrument array serving low resolution broadly non-selective detection
cbjectives.

j. Detectability is independent of a suitably prepared substrate in at least one

instance.

Continuity in detection objectives.

Exclusive use of detection schemes that have been tested in the laboratory

and in context with an engineering model of the flight instrument.

14.3.9.3 Physical Characteristics

Life Detectors #1 and #2 - Because of commonalities, life detectors #1 and #2 are
contained in a single integrated cylindrical package of about ome (1) cubic foot

volume (15" in diameter and 9-3/4" in height) as shown in Figure 14.3,9-~4, Sixty (60)
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culture chamber assemblies are circularly arranged in two like decks, one above the
other. A rotating assembly carrying service elements for the chamber cylinder decks
operates on a center with the stationary canisters and just above it. Service elements
carried by the rotating assembly include the six (6) B'detectors, the soil sample
distribution equipment, and the initiator mechanism for sample, nutrient, and reagent
dispensing. Eight of the detector #1 chambers are housed in 4 in situ deployable
modules, each about 3 1/2 cubic inches and 100 grams. The physical appearance of
these units is shown in Figure 14.,3.9-7. The modules are stowed and depléyed by
mechanisms of 10 1/2 cubic inches each.

Life Detector #3 - Life detector #3 package consists of a rectangular volume housing

detector components whose appearance is shown in Figure 14.3.9-8. The manifold
assembly shown provides attachment points for the hopper-water/sample transfer tubes
from above and for the culture cells from beneath. The manifold provides common
venting to each culture cell at a point much higher than the maximum culture liquid
height. A silicon rubber diaphragm pressure release valve fixes the maximum system
pressure. The tap (extreme right of the manifold in Figure 14.3.9-8) pressurizes

the space above the electrolyte in the reference pH probe to the same pressure as that
above the culture liquid. The transparent windows, for optical determination of
turbidity, are high quality fused quartz polished to minimize surface scratches. The
windows are sealed by circumferential quadrings deformed by pressure loading on the
screw-on sleeves acting through spacer rings.

14.3.9.4 Operation Description - Normal operation of the Laboratory based Life

Detector starts after the required amount of sample has been delivered by  the Surface
Laboratory sampling system. For the in situ component of detector #l operation be-

gins with the deployment of the in situ modules. Since this deployment is contingent
upon the availability of 5 consecutive hours of daylight it may or may not coincide with
the start of operation of the laboratory based portion of detector #l. Both the

in situ deployment function of detector #1 and the Sample processing, delivery and
chamber preparation functions of detectors #1, #2, and #3 are similar with respect

to the mechanism and effects of initiation. They are both initiated, independent

of the SDS Memory, on a contingency basis (5 hrs. at daylight or sample delivery com-
plete) and only provided they have been previously armed by the post landing output

of the SL sequencer. The consequence of both functions are identically the irreversible
utilization of the detector's expendable components such as nutrient media, anti-
metabolities, gas collection capacity, etc. Such use of expendables is neither

required not convenient prior to landing for pre-flight or in-flight monitoring
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operations. Aside from one shot type operation, such as these, the detectors
operate on the basis of repeating cycles (one minute science cycles and 10 minute
engineering function cycles) each independently initiated by the SDS memory. Pre-
flight or in-flight monitoring thus becomes a simple matter of adding extra pulse
counts to the SDS Memory (one block for each Flight monitoring operation required),
prior to initiating detector operation. See Figure 14.3.9-10 for the mission
sequence of events.

The metabolism experiments sequencer, after receiving power, a post-landing
arming signal and a report that sample ingestion has been completed, directs the
parasitic programmer to distribute sample aliquots to each chamber. During this
time, the sequencer also initiates appropriate engineering functions located about
the stationary parts of package. After the sample delivery portion of the sequence
has been completed (control aliquots sterilized and incubation begun), the sequencer
returns a cycle complete signal to the SDS. This begins the inflow of READ/CYCLE/
RESET command pulses from the SDS via the detector sequencer; one/minute to the
in situ programmer section and to the parasitic programmer, and one/10 minute to
the engineering data programmer section. As each READ/CYCLE/RESET command companion
line sees a cycle complete pulse the SDS memory block counts down one and initiates
another READ/CYCLE/RESET pulse. The total number of pulses delivered times their
interval determines the experiment duration. As an example of the function of this
pulse, and at the same time that of the rotating assembly systems, reference is
made to Figure 14.3.9-5. The detector head assembly, at each indexed portion of
the rotating assembly, will service one, two or three test chambers each minute,
depending on the number of Geiger tubes detected failed through a cycle of 10
indexed positions (one frame). For this reason science data points will be separated
(for failure mode operation of more than one frame) as follows: with two failures -
by 30 minutes, with one failure - by 20 minutes, and for normal operation with no
failures - by 10 minutes. Since 20 to 30 minute intervals between data points would
probably be the resolution of choice in the design of this experiment as repairable,
serious compromise does not result from an inappropriately detected failure. Since
remaining at one index position for more than one minute results in subsequent chamber
counting with alternate Geiger tubes, such a failure also provides an opportunity to
resolve offsets among test and replicate cultures. Position data is always included
in the 76 bit word to the SDS, and therefore the mode of operation and the identity
of the failed tube(s) is known. For each operational check required (prelaunch and

cruise) the SDS memory sequences an appropriate block of READ/CYCLE/RESET pulses
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into the package (i.e., 20 one minute pulses for the rotating assembly parasitic
programmer, two 10 minute pulses for the engineering programmer and four one-minute
pulses for the in situ programmer).

In-Situ Modules - Four in situ modules are deployed at the first opportunity for 5

consecutive hours of daylight. The modules are projectable to points some 100 or
more feet from the lander (one in each of the four lander quadrants). The soil

that comes under test is, therefore, a section of planetary surface undisturbed by
the lander retro rockets. Each module carries two chambers, one for test and one
for control. The single nutrient that is carried is transferred by wick onto
approximately a 1 em2 covered area of soil. The soil is thus wetted to some unknown
depth., How the soil is wetted, however, also an uncertainty, stands to be a more
significant variable. As suggested by terrestrial experience, the bias, if any,
resulting from such wetting will be biologically favorable. That is, experience
suggests that most soils act to a greater or lesser extent as a chromatographic

bed, of sorts, in effecting composition and concentration gradients in an applied
media (thereby increasing the opportunities of organisms for finding a favorable
formulation). Opportunities for optimum wetting are restricted to certain daylight
hours. After the test response has reached 2 times that of the control (background)
the module initiates injection of an antimetabolite onto the covered sample.
Detector #3 - The normal and pre-flight or in-flight operations of detector #3
parallels that of detectors #1 and #2 with regard to their use of expendables. The

tungsten lamp, burning at approximately 2,100°K, provides illumination for both the

lamp monitor photocell and the condenser lens system. The lamp photocell automatically

maintains the lamp intensity at a fixed value determined by the input network of the
regulator amplifier. The condenser lenses focus an image of the lamp filament on the
aperture plate which contains a 0.011 in. diameter hole. The illuminated aperture
serves as the source for the collimater which beams parallel light rays through the
transparent and windows of the cell. The imaging lens system focuses undeviated light
passing through the culture on the image occulting disc. The disc blocks the non-
scattered light from the signal photocell. Light ray deviations within the culture
cell, due to soil particles and microorganisms, miss the occulting disc and are
converted to an electrical signal in the photocell. The photocell electrical signal
is then conditioned by the signal amplifier and made available as a voltage output.

14.3.9.5 Performance Characteristics - Figure 14.3.9-11 tabulates principal life

detector performance characteristics.
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CHARACTERISTIC

DETECTOR 1

DETECTOR 2

DETECTOR 3

Purpose

The detection of any of a
wide variety of Earth type
microorganisms

The detection of strict
and facultative photo-
synthetic autrotrophs
and to provide data
pertinent to phyco-
chemical properties of
soil gas exchange

The detection at any micron
size viables that increase
in size or number with time

Type of Instrument

Radioisotopic metabo-
lism detector

Radioisotopic photo-
troph detector

Optical and chemical growth
detector

Performance
Accuracy of scientific
data
Sensitivity and
response time*

1%

Metabolism by 104 micro-
organisms for 1 hour**

1%

Function of light or dark
fixation period** (for a

1%

102 Viables in 10 to 14

hours****

1-hour period, about 102

phototrophs and 10
viables respectively)

Physical Character-
istics (Detectors 1

and 2 combined)

Weight 25 Pounds (metabolism package at 22 pounds + 4 in 5 pounds
situ modules at 3 pounds total)
Volume 1762 cu in (metabolism package at 1 cu ft + 4 in situ
modules at 42 cu in total) 256 cu in.
Interface Character-
istics (Detectors 1
and 2 combined)
Power 9 Watts 1.5 Watts
Data Scientific: 63,720 bits total (76 bpm for 12 hours & 30| 2-0to 5 volt analog lines

bpm for 5 hours)
Engineering: 3,900 bits total (55 bits per 10 min. for
12 hours)

1-0 to 5 volt analog line
Analog to digital conversion
requires 38,880 bits (1,440
bits/hr for 27 hrs)

*Sensitivity is influenced by many factors not the least of which is the unknown viable endity (s) itself. For
any given situation the rate and degree of respiration (metabolism and photo synthesis) may be affected by
such factors as strain(s) characteristics, composition of growth medium, age and number of cells in an in-
oculum, origin of inocuium, ages of culture when harvested for study, number and kinds of processes in ob-
taining inoculum, composition of respiration system, amount of light, of other gases present, etc. Therefore,
sensitivities given in this table are applicable only to the specified organisms **, *** as detected by the
subject detector whose general sensitivity is itself a function of the specific activity of the appropriate
radioisotope (that part of the nutrient constituent actually utilized by the unknown viable.)

**Given: A nutrient media, one of which constituent species (one utilized exclusively by the subject micro-
organism) having a radioisotopic label whose specific activity is 3.6 millicurie/milli mole, which media,
collectively, allows for the utilization by the microorganism of that constituent at a rate sufficient for them
to expire the oxidation product C1402 (or H2535 depending on the nature of the label) at the rate of
3 x 10-12 millimoles C1402/cell-hour (the typical figure for the metabolism of glucose by E. coli); 104 such
microorganism may be detected by this instrument within the first hour of experimentation, providing that
the later results from the control tests (also performed by this instrument while on the Martian surface) bear
out that such evolution of radioactive gas(es) as previously detected was in fact of biological origin.

***Examples given are for chlorella saccharophiles andE. coli respectively.
****This example is based on actual test using the engineering model of this instrument. The criteria for
dection was a change in turbidity of 1% full scale. Athough about 5 x 106 E. coli were involved in producing
this amount of change, the original inoculum consisted of less than 102 cells.

Figure 14.3.9-11
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o Life Detectors #1 and #2 - In addition to the data outputs directly per-

tinent to the construction of the typical types of curves depicted in Figures
14.3.9-12 and 14.3.9-13, the following data are returned to Earth: data
pertinent to the figures as a function of incubation temperature; pH of an
aliquot of heat sterilized soil and pH of an aliquot of unsterilized soil with
and without the addition of an amount of pure water; background g activity
from the soil sample; the amount of degradation of labled test media; and
data pertinent to the physical-chemical properties of gas exchange operative
in the delivered soil sample. Parameters which influence the performance
of life detectors #1 and #2 are:
a. The three normal operating temperature plateaus: nominally 2°C, 15°%
and 35°C and specimen-sample gas exchange test thermal profile of ambient
to 1000°C.
b. Nutrient Milieu Selected:
o0 Substrates - type and specific activity
o Salts - types and amounts
o pH - Amount of hydrogen ion activity
o Osmolarity - diffusion potential
c. Anti-metabolite selected-efficacy and selectivity of action site.
The sensitivity of the experimental method of observation is:
d. C14 beta decay sensitivity " 6.66 x lO7 counts per minute per millicurie
C14 (250,000 cpm full scale)
e. Beta decay resolution = 64 counts per minute

o Life Detector #3 - The principal data from detector #3 is the turbidity of

each of 5 cultures as a function of time (Figure 14.3.9-13). As a correlate
to the turbidity data, and contingent on a sterilizable pH probe, the pH
of each culture is measured as a function o
Parameters which influence the performance of life detector #3 are:
a. Water to sample specimen ratio (osmolarity of mixture)
b. Nutrient milieu as applicable
c. Test temperature
The sensitivities of the experimental methods of observation are:
a. pH - range of 4 to 9 pH units with overall sensitivity and stability
of 0.1 pH units

b. Turbidity - max sensitivity for lu size particles
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TYPICAL LIFE DETECTOR DATA
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TYPICAL LIFE DETECTOR DATA

TYPICAL SCIENTIFIC DATA EXPECTED FROM
IN SITU COMPONENT OF LIFE DETECTOR NO. 1
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Environmental Limits - The primary environmental stresses affecting the performances

of the life detectors are high temperature and high radiation levels. Both of these
stresses influence the integrity of the labeled substrates while temperature alone,
so far as it is known, affects the integrity of the soil extract (where used). The
envirommental limits for detectors #1 and #2 are: during operation: 2°C (2°C to
30°C for in situ) and <3 x 106 rads; during non-operation:< 130°C and < 3 X 106 rads.

The environmental limits for detector #3 are: during operation: 2°C and lO6

neutrons/cm2 - hr and lO3 roentgen/hr gammas; during non-operation: 150°C and 1013
(1 mev) neutrons/cm2 and 10’ roentgen of gammas. All detectors function in a 1.02
to 1 x 10-3 bar pressure ambient.

14.3.9.6 Interface Definition - The detector packages are shown in relation to

the surface laboratory and its interfacing systems in Figure 14.3.9-14. General
design requirements are also shown. A compilation of the detailed data and

electrical interfaces and requirements is as follows:

Requirements
Specific Interface Life Detectors #1 and #2 Life Detector #3
DATA OUTPUT
Scientific Data 2 (76 bpm & 30 bpm) 2(0-5V analogs)
Engineering Data 1 (55 bits per 10 min) 1(0-5V analog)
Cycle Complete 3 (2-1/min 1-1/10 min) 3
SDS COMMANDS
1/20 sec 0
1/min 2 0
1/10 min 2
SDS CLOCK (10 KHZ)
LABORATORY SEQUENCER 5 (1 post landing & 1

4 in situ eject)
SAMPLE ACQUISITION AND
PROCESSING (DELIVERY) 1 (6 cc) 1 (0.5 cc)
POWER SYSTEM 1 (28 s 5 vde) 1 (28 I 5 vdc)
1¢G ¥ 0.005 vde)

14.3.9.7 Reliability and Safety Considerations - High reliability in Detectors

#1, #2 and #3 derives from the particular arrangements selected for their major com-

ponents. CRITICAL elements such as the optics train in detector #3 would have to be
constructed to minimize the possibility of failure. In the case of the optics train

failure modes protected against are optical misalignments, abrasions of optical
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LIFE DETECTOR INTERFACE DIAGRAM
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surfaces, condensations on optical surfaces after heat sterilization, and lamp burn
out following shock or vibration damage. Five independent culture systems and de-
tection circuits allow for tradeoffs between experimental treatment and redundant or
replicate tests.

14.3.9.8 Test (Pre-Flight, In-Flight Monitoring and Checkout) - The SDS selects and

initiates all in-flight (and post terminal heat sterilization) monitoring of the three
life detectors. In-flight checkout does not provide information on the status of
expendables (efficacy of nutrient media and anti-metabolites, integrity of chemical
gas collectors and their deployment mechanisms). Pre-flight monitoring utilizes a
DUPLICATE SDS and power system interface and provides the same results as in-flight
monitoring. Earlier tests can provide complete information on functional status by

including a simulation of SL sequencer post landing signals. Because there is no

provision for calibrating the pH probes against a standard buffer, and for evaluating the

the effect of terminal heat sterilization on the optics train (condensate may form
on protected optical surfaces), it would be desirable to consider the use of one
of the 5 chambers for prelaunch and cruise checkout procedures (alternately a

6th chamber could be added).

14.3.9.9 Development Requirement — Further development effort is contemplated to

flight qualify the selected detectors. Also, the following require considerable
attention to bring about desirable and beneficial improvements:

Detectors #1 and #2

a. B detector conversion efficiency (present Geiger arrangement is about 6%
efficient).

b. Chemical gas collectors (heat labile at pyrolysis temperatures, subject
to deterioration with time, subject to shock and vibration damage).

c. Nutrient systems (some critical constituents are heat labile at steriliza-

broader spectrum of candidate substrates).

d. In situ module (surface seal questionable if deployed onto unfavorable
terrain, thermal control requirements not suitably defined).

Detector #3

a. pH probe (currently available models are not completely reliable following
heat sterilization).

b. Electro optics (better spectral match for expected range of microbe sizes,
particle size limitations for settling time requirement and desired path

length for the optical density requirements of a realizable instrument).
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14.3.10 Subsurface Probe Sensors

14.3.10.1 Equipment Identification and Usage - The function of the subsurface probe

instruments is to obtain periodic measurements of the subsurface temperature at
several known depths. The temperature data will be correlated with local time-of-
day to construct diurnal temperature profile plots as a function of depth beneath
the surface. This data, together with atmospheric, surface data,and subsurface

gas analysis will be time-correlated to provide an insight into the physical pro-
cesses occurring on Mars. Nine thermocouples with their associated reference
junction will perform this function. Figure 14,3.10-1 presents the mission sequence
for these instruments.

14.3.10.2 Design Requirements and Constraints - The design of these sensors is

influenced by the small volume available in the subsurface probe defined in

Section 14.2.3 and by both physical and operational interface compatibility require-
ments. Interfaces between the probe structure and the thermocouples must be com-
patible. The reference junction must be compatible with the structural mounting
provisions, thermal control temperature cycling, input voltage levels and regulation,
and telemetry input signal characteristics. In addition, all wires must be deploy-
able with the boom which is approximately 60 inches long.

14.3.10.3 Physical Characteristics - The thermocouples used to obtain the diurnal

temperature variations as a function of depth are composed of materials which will
yield an output of 35 to 40 mvdc at the maximum temperature difference between the
reference junction and the sensed temperature. The reference junction dimensions
are presently undetermined but the platinum resistance thermometer which is used
to monitor its temperature is 1.50 x 1.25 x 0.4 inches for a volume of 0.75 cubic
inches. The thermocouples are located in the probe as shown in Figure 14.3.10-2.

14.3.10.4 Operation Description - After the probe is deployed into the soil, the

thermocouples will be read in accordance with a preprogrammed schedule to determine:
0 Subsurface diurnal temperature variations as a function of depth
beneath the surface
0 Penetration depth of the probe in the soil.
The thermocouples are sampled at two different rates due to the varying rates

of temperature change. Figure 14.3.10-3 shows a typical diurnal profile based on
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SUBSURFACE PROBE THERMOCOUPLE
AND GAS SAMPLE PORT LOCATION
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TYPICAL MARTIAN SUBSURFACE DIURNAL TEMPERATURE PROFILE

Equations Used:
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calculations using a SiO2 soil and a solar input corresponding to a +8°
latitude. These variations coupled with an even greater temperature rate of
change above the surface resulted in the selection of two sampling rates.
Periods of greatest activity occur around sunrise and sunset. Therefore, the
thermocouples will be sampled at a rate of one sample per minute for each
thermocouple during the intervals one hour before and one hour after sunrise and
sunset. During the rest of the mission the thermocouples will be sampled at

a rate of four samples per hour.

The reference junction is maintained at a stable temperature throughout the
entire surface mission and its temperature is measured every time the thermo-
couples are read out. Figure 14.3.10-4 presents a functionsl block diagram of

the temperature transducers.

14.3.10.5 Performance Characteristics - Selection of thermocouple materials which

would provide a 35 to 40 mvdc output for maximum reference junction/sensed
temperature difference will permit a + 1% of full scale accuracy to be achieved.
Response times compatible with temperature changes pose no problems for the
selected sensors. The thermocouples will be fabricated from a single material
batch to ensure uniformity of thermocouple characteristics.

The reference junction temperature will be stable and always above the 330°K
upper range of the thermocouples. The reference junction temperature will also
be read to an accuracy of + 1% of the full scale range of its temperature
transducer. Figure 14.3.10-5 presents the instruments'typical characteristics.

14.3.10.6 Interface Definition - The thermocouples are physically installed in

the probe structure with thermocouple wiring to the reference junction through
the probe and its boom. The reference junction interfaces with the Power,
Structural, Telemetry and the Thermal Control Subsystems. These interfaces
are tabulated in Figure 14.3.10-6. The probe temperature sensors interface
diagram is presented as Figure 14.3.10-7.

14.3.10.7 Reliability and Safety Considerations - Multichannel redundancy is

inherent by use of nine individual thermocouples. Data is retrieved in event

of a single or multiple thermocouple failure. Degradation of the single reference
junction will still allow experiment success provided that a junction temperature
is obtained from the platinum resistance thermometer.

There are no unique safety considerations relative to the subsurface probe

sSensors.
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SUBSURFACE PROBE TEMPERATURE TRANSDUCERS
FUNCTIONAL SCHEMATIC DIAGRAM

Nine 0 to 40 mvdc Signals

5.00 + 0.05 vdc

9 Reference
Thermocouples Junction
Platinum

Resistance
Element

]

Resistance

Bridge

Reference Junction Temperature

0 to 40 mvdc

Figure 14.3.10-4

SUBSURFACE PROBE INSTRUMENT CHARACTERISTICS

CHARACTERISTIC

THERMOCOUPLES

REFERENCE JUNCTION
TEMPERATURE SENSOR

Range

Accuracy
Output voltage

Materials

Number of measurements

Input voltage

Input power

Location

150° to 330°K

+ 1% of full scale

Approx. 0.25 mv/ °K

Determined by reference junction
temperatures

332 over a nominal 27 hour mission.
60 sph for 4 hours plus 4 sph

for 23 hours

NA

NA

Inside the subsurface probe

Determined by reference junction
operating temperatures and excursions

+ 1% of full scale

0 to 40 mvdc

Platinum resistance element

332 over a nominal 27 hour mission —
60 sph for 4 hours plus 4 sph for

26 hours

5.00 +.05 vdc

.01 watts

At known, stable temperature

location above the 330°K upper
range of thermocouples
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REFERENCE JUNCTION INTERFACE REQUIREMENTS

INTERFACING SUBSYSTEM

INTERFACE

Power

Struct ural

Telemetry

Thermal Control

5.00 + 0.05 vdc for platinum resistance thermometer

Mounting for reference junction and its integral

temperature sensor in the SL.

Ten 0 to 40 mvdc channels with sampling rates of

60 sph and 4 sph.

Provide known temperature source for
reference junction.
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SUBSURFACE PROBE TEMPERATURE TRANSDUCERS
AND GAS ACCESS PORTS INTERFACE DIAGRAM
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Figure 14.3.10--7
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14.3.10.8 Test Requirements - Pre-flight checkout and in-flight monitoring require-

ments consists of:
o Simple voltage and continuity checks, and
o Temperature stability check of the reference junction

14.3.10.9 Development Requirements - All techniques and materials required to

implement this instrument do exist; therefore, no advanced technology is

required to meet the probe instrumentation requirements.
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